Differentiable Learning of Logical Rules for Knowledge Base Completion
نویسندگان
چکیده
We study the problem of learning probabilistic first-order logical rules for knowledge base reasoning. This learning problem is difficult because it requires learning the parameters in a continuous space as well as the structure in a discrete space. We propose a framework, Neural Logic Programming, that combines the parameter and structure learning of first-order logical rules in an end-to-end differentiable model. This approach is inspired by a recently-developed differentiable logic called TensorLog [5], where inference tasks can be compiled into sequences of differentiable operations. We design a neural controller system that learns to compose these operations. Empirically, our method outperforms prior work on multiple knowledge base benchmark datasets, including Freebase and WikiMovies.
منابع مشابه
Differentiable Learning of Logical Rules for Knowledge Base Reasoning
We study the problem of learning probabilistic first-order logical rules for knowledge base reasoning. This learning problem is difficult because it requires learning the parameters in a continuous space as well as the structure in a discrete space. We propose a framework, Neural Logic Programming, that combines the parameter and structure learning of first-order logical rules in an end-to-end ...
متن کاملLearning Knowledge Base Inference with Neural Theorem Provers
In this paper we present a proof-of-concept implementation of Neural Theorem Provers (NTPs), end-to-end differentiable counterparts of discrete theorem provers that perform first-order inference on vector representations of symbols using function-free, possibly parameterized, rules. As such, NTPs follow a long tradition of neural-symbolic approaches to automated knowledge base inference, but di...
متن کاملCombining Representation Learning with Logic for Language Processing
The current state-of-the-art in many natural language processing and automated knowledge base completion tasks is held by representation learning methods which learn distributed vector representations of symbols via gradient-based optimization. They require little or no hand-crafted features, thus avoiding the need for most preprocessing steps and task-specific assumptions. However, in many cas...
متن کاملTraining Relation Embeddings under Logical Constraints
We present ways of incorporating logical rules into the construction of embedding based Knowledge Base Completion (KBC) systems. Enforcing “logical consistency” in the predictions of a KBC system guarantees that the predictions comply with logical rules such as symmetry, implication and generalized transitivity. Our method encodes logical rules about entities and relations as convex constraints...
متن کاملExtending the Qualitative Trajectory Calculus Based on the Concept of Accessibility of Moving Objects in the Paths
Qualitative spatial representation and reasoning are among the important capabilities in intelligent geospatial information system development. Although a large contribution to the study of moving objects has been attributed to the quantitative use and analysis of data, such calculations are ineffective when there is little inaccurate data on position and geometry or when explicitly explaining ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1702.08367 شماره
صفحات -
تاریخ انتشار 2017