Tissue-Specific Cell Cycle Indicator Reveals Unexpected Findings for Cardiac Myocyte Proliferation.

نویسندگان

  • Maretoshi Hirai
  • Ju Chen
  • Sylvia M Evans
چکیده

RATIONALE Discerning cardiac myocyte cell cycle behavior is challenging owing to commingled cell types with higher proliferative activity. OBJECTIVE To investigate cardiac myocyte cell cycle activity in development and the early postnatal period. METHODS AND RESULTS To facilitate studies of cell type-specific proliferation, we have generated tissue-specific cell cycle indicator BAC transgenic mouse lines. Experiments using embryonic fibroblasts from CyclinA2-LacZ-floxed-EGFP, or CyclinA2-EGFP mice, demonstrated that CyclinA2-βgal and CyclinA2-EGFP were expressed from mid-G1 to mid-M phase. Using Troponin T-Cre;CyclinA2-LacZ-EGFP mice, we examined cardiac myocyte cell cycle activity during embryogenesis and in the early postnatal period. Our data demonstrated that right ventricular cardiac myocytes exhibited reduced cell cycle activity relative to left ventricular cardiac myocytes in the immediate perinatal period. Additionally, in contrast to a recent report, we could find no evidence to support a burst of cardiac myocyte cell cycle activity at postnatal day 15. CONCLUSIONS Our data highlight advantages of a cardiac myocyte-specific cell cycle reporter for studies of cardiac myocyte cell cycle regulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy.

RATIONALE Cardiac myocyte-specific deletion of either glycogen synthase kinase (GSK)-3α and GSK-3β leads to cardiac protection after myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration because of the fact that all GSK-3-targeted drugs, including the drugs already in clinical trial target both isoforms of GSK-3, ...

متن کامل

Multimodal Regulation of Cardiac Myocyte Proliferation.

Efficient cardiac regeneration is closely associated with the ability of cardiac myocytes to proliferate. Fetal or neonatal mouse hearts containing proliferating cardiac myocytes regenerate even extensive injuries, whereas adult hearts containing mostly post-mitotic cardiac myocytes have lost this ability. The same correlation is seen in some homoiotherm species such as teleost fish and urodeli...

متن کامل

Inhibition of fibroblast proliferation in cardiac myocyte cultures by surface microtopography.

Cardiac myocyte cultures usually require pharmacological intervention to prevent overproliferation of contaminating nonmyocytes. Our aim is to prevent excessive fibroblast cell proliferation without the use of cytostatins. We have produced a silicone surface with 10-microm vertical projections that we term "pegs," to which over 80% of rat neonatal cardiac fibroblasts attach within 48 h after pl...

متن کامل

FGF10 promotes regional foetal cardiomyocyte proliferation and adult cardiomyocyte cell-cycle re-entry.

AIMS Cardiomyocyte proliferation gradually declines during embryogenesis resulting in severely limited regenerative capacities in the adult heart. Understanding the developmental processes controlling cardiomyocyte proliferation may thus identify new therapeutic targets to modulate the cell-cycle activity of cardiomyocytes in the adult heart. This study aims to determine the mechanism by which ...

متن کامل

Cardiac myocyte cell cycle control in development, disease, and regeneration.

Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle soon after birth in mammals. Although the extent to which adult cardiac myocytes are capable of cell cycle reentry is controversial and species-specific differences may exist, it appears that for the vast majority of adult cardiac myocytes the predominant form of growth postnatally is an increase in cell size (hypert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 118 1  شماره 

صفحات  -

تاریخ انتشار 2016