Reasoning about Deterministic Actions with Probabilistic Prior and Application to Stochastic Filtering
نویسندگان
چکیده
We present a novel algorithm and a new understanding of reasoning about a sequence of deterministic actions with a probabilistic prior. When the initial state of a dynamic system is unknown, a probability distribution can be still specified over the initial states. Estimating the posterior distribution over states (filtering) after some deterministic actions occurred is a problem relevant to AI planning, natural language processing (NLP), and robotics among others. Current approaches to filtering deterministic actions are not tractable even if the distribution over the initial system state is represented compactly. The reason is that state variables become correlated after a few steps. The main innovation in this paper is a method for sidestepping this problem by redefining state variables dynamically at each time step such that the posterior for time t is represented in a factored form. This update is done using a progression algorithm as a subroutine, and our algorithm’s tractability follows when that subroutine is tractable. Our results are for general deterministic actions and in particular, our algorithm is tractable for one-to-one and STRIPS actions. We apply our reasoning algorithm about deterministic actions to reasoning about sequences of probabilistic actions and improve the efficiency of the current probabilistic reasoning approaches. We demonstrate the efficiency of the new algorithm empirically over AI-Planning data sets.
منابع مشابه
Reasoning about Deterministic Action Sequences with Probabilistic Priors
We present a novel algorithm and a new understanding of reasoning about a sequence of deterministic actions with a probabilistic prior. When the initial state of a dynamic system is unknown, a probability distribution can be still specified over the initial states. Estimating the posterior distribution over states (filtering) after some deterministic actions occurred is a problem relevant to AI...
متن کاملOptimizing of an Integrated Production-Distribution System with Probabilistic Parameters in a Multi-Level Supply Chain Network Considering the Backorder
One of the main arguments in the supply chain is integrated production-distribution planning. Integrated production and distribution of products in a supply chain plays an important role in reducing the costs of the chain. In this paper, a mathematical model for the integrated production-distribution problem in a three-level supply chain, including manufacturing plants, distribution centers and...
متن کاملStochastic Modelling of Interactive Systems
Several techniques for specification exist to capture certain aspects of user behaviour, with the goal of reasoning about the usability of the system and other human-factors related issues. One such approach is to encode a set of assumptions about user behaviour in a user model. A difficulty with this approach is that human behaviour is inherently non-deterministic; humans make errors, perform ...
متن کاملApplication of the Kalman-Bucy filter in the stochastic differential equation for the modeling of RL circuit
In this paper, we present an application of the stochastic calculusto the problem of modeling electrical networks. The filtering problem have animportant role in the theory of stochastic differential equations(SDEs). In thisarticle, we present an application of the continuous Kalman-Bucy filter for a RLcircuit. The deterministic model of the circuit is replaced by a stochastic model byadding a ...
متن کاملStochastic Reasoning with Action Probabilistic Logic Programs
Title of dissertation: Stochastic Reasoning with Action Probabilistic Logic Programs Gerardo Ignacio Simari, Doctor of Philosophy, 2010 Dissertation directed by: Professor V.S. Subrahmanian Department of Computer Science In the real world, there is a constant need to reason about the behavior of various entities. A soccer goalie could benefit from information available about past penalty kicks ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010