Carbon Isotope Fractionation during Catabolism and Anabolism in Acetogenic Bacteria Growing on Different Substrates.
نویسندگان
چکیده
Homoacetogenic bacteria are versatile microbes that use the acetyl coenzyme A (acetyl-CoA) pathway to synthesize acetate from CO2 and hydrogen. Likewise, the acetyl-CoA pathway may be used to incorporate other 1-carbon substrates (e.g., methanol or formate) into acetate or to homoferment monosaccharides completely to acetate. In this study, we analyzed the fractionation of pure acetogenic cultures grown on different carbon substrates. While the fractionation of Sporomusa sphaeroides grown on C1 compounds was strong (εC1, -49‰ to -64‰), the fractionation of Moorella thermoacetica and Thermoanaerobacter kivui using glucose (εGlu= -14.1‰) was roughly one-third as strong, suggesting a contribution of less-depleted acetate from fermentative processes. ForM. thermoacetica, this could indeed be validated by the addition of nitrate, which inhibited the acetyl-CoA pathway, resulting in fractionation during fermentation (εferm= -0.4‰). In addition, we determined the fractionation into microbial biomass of T. kivui grown on H2/CO2(εanabol.= -28.6‰) as well as on glucose (εanabol.= +2.9‰).
منابع مشابه
Carbon Isotope Fractionation by Autotrophic Bacteria with Three Different C 02 Fixation Pathways
Carbon isotope fractionation during autotrophic growth of different bacteria which possess different autotrophic C 0 2 fixation pathways has been studied. 13C /l2C-Ratios in the cell carbon of the following bacteria were determined ( C 0 2 fixation pathway suggested or proven in paren theses): Alkaligenes eutrophus (reductive pentose phosphate cycle), Desulfobacterium autotrophicum and A cetob...
متن کاملStable carbon isotope fractionation by sulfate-reducing bacteria.
Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotro...
متن کاملStable isotope fractionation caused by glycyl radical enzymes during bacterial degradation of aromatic compounds.
Stable isotope fractionation was studied during the degradation of m-xylene, o-xylene, m-cresol, and p-cresol with two pure cultures of sulfate-reducing bacteria. Degradation of all four compounds is initiated by a fumarate addition reaction by a glycyl radical enzyme, analogous to the well-studied benzylsuccinate synthase reaction in toluene degradation. The extent of stable carbon isotope fra...
متن کاملVariation in stable carbon isotope fractionation during aerobic degradation of phenol and benzoate by contaminant degrading bacteria
Variation in the natural abundance stable carbon isotope composition of respired CO2 and biomass has been measured for two types of aerobic bacteria found in contaminated land sites. Pseudomonas putida strain NCIMB 10015 was cultured on phenol and benzoate and Rhodococcus sp. I1 was cultured on phenol. Results indicate that aerobic isotope fractionations of diering magnitudes occur during aero...
متن کاملAnalysis of the Core Genome and Pan-Genome of Autotrophic Acetogenic Bacteria
Acetogens are obligate anaerobic bacteria capable of reducing carbon dioxide (CO2) to multicarbon compounds coupled to the oxidation of inorganic substrates, such as hydrogen (H2) or carbon monoxide (CO), via the Wood-Ljungdahl pathway. Owing to the metabolic capability of CO2 fixation, much attention has been focused on understanding the unique pathways associated with acetogens, particularly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 82 9 شماره
صفحات -
تاریخ انتشار 2016