On Natural Language Processing and Plan Recognition
نویسندگان
چکیده
The research areas of plan recognition and natural language parsing share many common features and even algorithms. However, the dialog between these two disciplines has not been effective. Specifically, significant recent results in parsing mildly context sensitive grammars have not been leveraged in the state of the art plan recognition systems. This paper will outline the relations between natural language processing(NLP) and plan recognition(PR), argue that each of them can effectively inform the other, and then focus on key recent research results in NLP and argue for their applicability to PR.
منابع مشابه
سیستم برچسب گذاری اجزای واژگانی کلام در زبان فارسی
Abstract: Part-Of-Speech (POS) tagging is essential work for many models and methods in other areas in natural language processing such as machine translation, spell checker, text-to-speech, automatic speech recognition, etc. So far, high accurate POS taggers have been created in many languages. In this paper, we focus on POS tagging in the Persian language. Because of problems in Persian POS t...
متن کاملسیستم شناسایی و طبقهبندی موجودیتهای اسمی در متون زبان فارسی بر پایه شبکه عصبی
Named Entity Recognition (NER) is a fundamental task in natural language processing and also known as a subset of information extraction. We seek to locate and classify named entities in text into predefined categories such as the names of persons, organizations, locations, expressions of times, etc. Named Entity Recognition for English texts has been researched widely for the past years, howev...
متن کاملPlan and Activity Recognition from a Topic Modeling Perspective
We examine new ways to perform plan recognition (PR) using natural language processing (NLP) techniques. PR often focuses on the structural relationships between consecutive observations and ordered activities that comprise plans. However, NLP commonly treats text as a bag-of-words, omitting such structural relationships and using topic models to break down the distribution of concepts discusse...
متن کاملA Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملAn ascription-based approach to Speech Acts
The two principal areas of natural language processing research in pragmatics are belief modelling and speech act processing. Belief modelling is the development of techniques to represent the mental attitudes of a dialogue participant. The latter approach, speech act processing, based on speech act theory, involves viewing dialogue in planning terms. Utterances in a dialogue are modelled as st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007