Regulation of the KV4.2 complex by CaV3.1 calcium channels.

نویسندگان

  • Dustin Anderson
  • Renata Rehak
  • Shahid Hameed
  • W Hamish Mehaffey
  • Gerald W Zamponi
  • Ray W Turner
چکیده

A-type potassium current generated by the K(V)4 family of channels is an important factor regulating the frequency, latency and dendritic backpropagation of spike discharge. The K(V)4.2 complex of K(V)4.2-KChIP3-DPP10c was recently shown to form a novel signaling complex through its association with T-type Ca(V)3.2 or Ca(V)3.3 calcium channel isoforms. Ca(V)3-mediated calcium entry was shown to selectively right-shift the inactivation voltage of K(V)4.2 into the physiological range to modulate cerebellar stellate cell latency and gain. We now show that Ca(V)3.1 calcium channels can also associate with the K(V)4.2 complex to effect similar regulation of K(V)4.2 inactivation voltage. By comparison, no calcium-dependent shift in K(V)4.2 inactivation properties was elicited by any of Ca(V)1.4, Ca(V)2.1 or Ca(V)2.3 calcium channels coexpressed with the K(V)4.2 complex, emphasizing the important role for low voltage-activated Ca(V)3 channels in this signaling complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bradycardia and Slowing of the Atrioventricular Conduction in Mice Lacking CaV3.1/ 1G T-Type Calcium Channels

The generation of the mammalian heartbeat is a complex and vital function requiring multiple and coordinated ionic channel activities. The functional role of low-voltage activated (LVA) T-type calcium channels in the pacemaker activity of the sinoatrial node (SAN) is, to date, unresolved. Here we show that disruption of the gene coding for Cav3.1/ 1G T-type calcium channels (cacna1g) abolishes ...

متن کامل

Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels.

The generation of the mammalian heartbeat is a complex and vital function requiring multiple and coordinated ionic channel activities. The functional role of low-voltage activated (LVA) T-type calcium channels in the pacemaker activity of the sinoatrial node (SAN) is, to date, unresolved. Here we show that disruption of the gene coding for CaV3.1/alpha1G T-type calcium channels (cacna1g) abolis...

متن کامل

T-type calcium channel trigger p21ras signaling pathway to ERK in Cav3.1-expressed HEK293 cells.

We constructed a new cell line which stably expressed Cav3.1 and Kir2.1 subunits in HEK293 cells (HEK293/Cav3.1/Kir2.1) in order to investigate the unknown cellular signaling pathways of T-type voltage-dependent calcium channels. The new cell line has a stable resting membrane potential and can activate T-type Ca(2+) channels by KCl-mediated depolarization. We showed that Cav3.1 activation resu...

متن کامل

Estrogen upregulates T-type calcium channels in the hypothalamus and pituitary.

Low voltage-activated (T-type) Ca2+ channels are responsible for generating low-threshold spikes (LTS) that facilitate burst firing and transmitter release in neurons. The T-type Ca2+ channels contain a regulatory alpha1 subunit, and several isoforms of the alpha1 subunit (Cav3.1, 3.2, 3.3) have been cloned. The Cav 3.1 alpha1 subunit is abundantly expressed in the hypothalamus. Previously, we ...

متن کامل

Age-related downregulation of the CaV3.1 T-type calcium channel as a mediator of amyloid beta production.

Alzheimer's is a crippling neurodegenerative disease that largely affects aged individuals. Decades of research have highlighted age-related changes in calcium homeostasis that occur before and throughout the duration of the disease, and the contributions of such dysregulation to Alzheimer's disease pathogenesis. We report an age-related decrease in expression of the CaV3.1 T-type calcium chann...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Channels

دوره 4 3  شماره 

صفحات  -

تاریخ انتشار 2010