A knowledge discovery pipeline for medical decision support using clustering ensemble and neural network ensemble
نویسندگان
چکیده
It is widely recognized that knowledge discovery and data mining in the health domain are two techniques than scientists and researchers are always looking into areas for improvements and accurateness in prediction. In this paper, we present a multi-tier knowledge acquisition, amalgamation and learning info-structure for the learning of rules that have been generated from medical datasets comprising both annotated and un-annotated attributes. We propose a hybridized approach for rule learning manifested in an enhanced Knowledge Discovery Pipeline which features data cleansing, a novel data clustering ensemble mechanism via boosting, data discretization, rule generation via rough sets, rule filtering and eventually neural network ensemble via bagging. The pipeline, in addition to generating decision rules, would produce a neural knowledge base that can be considered an abstraction of knowledge that is present in the dataset.
منابع مشابه
Using ensemble and learning techniques towards extending the knowledge discovery pipeline
Knowledge discovery presents itself as a very useful technique to transform enterprise data into actionable knowledge. However, their effectiveness is limited in view that it is difficult to develop a knowledge discovery pipeline that is suited for all types of datasets. Moreover, it is difficult to select the best possible algorithm for each stage of the pipeline. In this paper, we define (a) ...
متن کاملEnsemble strategies to build neural network to facilitate decision making
There are three major strategies to form neural network ensembles. The simplest one is the Cross Validation strategy in which all members are trained with the same training data. Bagging and boosting strategies pro-duce perturbed sample from training data. This paper provides an ideal model based on two important factors: activation function and number of neurons in the hidden layer and based u...
متن کاملImproving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering
Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005