Inverse uniqueness results for Schrödinger operators using de Branges theory
نویسندگان
چکیده
We utilize the theory of de Branges spaces to show when certain Schrödinger operators with strongly singular potentials are uniquely determined by their associated spectral measure. The results are applied to obtain an inverse uniqueness theorem for perturbed spherical Schrödinger operators.
منابع مشابه
Schrödinger Operators and De Branges Spaces
We present an approach to de Branges’s theory of Hilbert spaces of entire functions that emphasizes the connections to the spectral theory of differential operators. The theory is used to discuss the spectral representation of one-dimensional Schrödinger operators and to solve the inverse spectral problem.
متن کاملDirect and inverse spectral theory of singular left-definite Sturm–Liouville operators
We discuss direct and inverse spectral theory of self-adjoint Sturm– Liouville relations with separated boundary conditions in the left-definite setting. In particular, we develop singular Weyl–Titchmarsh theory for these relations. Consequently, we apply de Branges’ subspace ordering theorem to obtain inverse uniqueness results for the associated spectral measure. The results can be applied to...
متن کاملInverse Uniqueness Results for One-dimensional Weighted Dirac Operators
Given a one-dimensional weighted Dirac operator we can define a spectral measure by virtue of singular Weyl–Titchmarsh–Kodaira theory. Using the theory of de Branges spaces we show that the spectral measure uniquely determines the Dirac operator up to a gauge transformation. Our result applies in particular to radial Dirac operators and extends the classical results for Dirac operators with one...
متن کاملUniqueness Theorems in Inverse Spectral Theory for One-dimensional Schrödinger Operators
New unique characterization results for the potential V (x) in connection with Schrödinger operators on R and on the half-line [0,∞) are proven in terms of appropriate Krein spectral shift functions. Particular results obtained include a generalization of a well-known uniqueness theorem of Borg and Marchenko for Schrödinger operators on the half-line with purely discrete spectra to arbitrary sp...
متن کاملA Uniqueness Theorem of the Solution of an Inverse Spectral Problem
This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014