A new barrier for a class of semidefinite problems
نویسندگان
چکیده
We introduce a new barrier function to solve a class of Semidefinite Optimization Problems (SOP) with bounded variables. That class is motivated by some (SOP) as the minimization of the sum of the first few eigenvalues of symmetric matrices and graph partitioning problems. We study the primal-dual central path defined by the new barrier and we show that this path is analytic, bounded and that all cluster points are optimal solutions of the primal-dual pair of problems. Then, using some ideas from semi-analytic geometry we prove its full convergence. Finally, we introduce a new proximal point type Bregman algorithm for that class of problems and prove its convergence.
منابع مشابه
An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملA class of polynomial volumetric barrier decomposition algorithms for stochastic semidefinite programming
Ariyawansa and Zhu [5] have recently proposed a new class of optimization problems termed stochastic semidefinite programs (SSDP’s). SSDP’s may be viewed as an extension of two-stage stochastic (linear) programs with recourse (SLP’s). Zhao [25] has derived a decomposition algorithm for SLP’s based on a logarithmic barrier and proved its polynomial complexity. Mehrotra and Özevin [17] have exten...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- RAIRO - Operations Research
دوره 40 شماره
صفحات -
تاریخ انتشار 2006