Applying superresolution localization-based microscopy to neurons.
نویسنده
چکیده
Proper brain function requires the precise localization of proteins and signaling molecules on a nanometer scale. The examination of molecular organization at this scale has been difficult in part because it is beyond the reach of conventional, diffraction-limited light microscopy. The recently developed method of superresolution, localization-based fluorescent microscopy (LBM), such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), has demonstrated a resolving power at a 10 nm scale and is poised to become a vital tool in modern neuroscience research. Indeed, LBM has revealed previously unknown cellular architectures and organizational principles in neurons. Here, we discuss the principles of LBM, its current applications in neuroscience, and the challenges that must be met before its full potential is achieved. We also present the unpublished results of our own experiments to establish a sample preparation procedure for applying LBM to study brain tissue.
منابع مشابه
Accurate Construction of Photoactivated Localization Microscopy (PALM) Images for Quantitative Measurements
Localization-based superresolution microscopy techniques such as Photoactivated Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) have allowed investigations of cellular structures with unprecedented optical resolutions. One major obstacle to interpreting superresolution images, however, is the overcounting of molecule numbers caused by fluorophore photobli...
متن کاملMolecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy.
We investigate the cooperative effect of molecular tilt and defocus on fluorophore localization by centroid calculation in far-field superresolution microscopy based on stochastic single molecule switching. If tilt angle and defocus are unknown, the localization contains systematic errors up to about ±125 nm. When imaging rotation-impaired fluorophores of unknown random orientation, the average...
متن کاملBleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules.
Superresolution imaging techniques based on the precise localization of single molecules, such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), achieve high resolution by fitting images of single fluorescent molecules with a theoretical Gaussian to localize them with a precision on the order of tens of nanometers. PALM/STORM rely on phot...
متن کاملUnified resolution bounds for conventional and stochastic localization fluorescence microscopy.
Superresolution microscopy enables imaging in the optical far field with ~20 nm-scale resolution. However, classical concepts of resolution using point-spread and modulation-transfer functions fail to describe the physical limits of superresolution techniques based on stochastic localization of single emitters. Prior treatments of stochastic localization microscopy have defined how accurately a...
متن کاملExtracting microtubule networks from superresolution single-molecule localization microscopy data
Microtubule filaments form ubiquitous networks that specify spatial organization in cells. However, quantitative analysis of microtubule networks is hampered by their complex architecture, limiting insights into the interplay between their organization and cellular functions. Although superresolution microscopy has greatly facilitated high-resolution imaging of microtubule filaments, extraction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Synapse
دوره 69 5 شماره
صفحات -
تاریخ انتشار 2015