Localization of Myosin and Actin in the Pelage and Whisker Hair Follicles of Rat

نویسندگان

  • Kiyokazu Morioka
  • Toshiyuki Matsuzaki
  • Kuniaki Takata
چکیده

The combined effects of myosin II and actin enable muscle and nonmuscle cells to generate forces required for muscle contraction, cell division, cell migration, cellular morphological changes, the maintenance of cellular tension and polarity, and so on. However, except for the case of muscle contraction, the details are poorly understood. We focus on nonmuscle myosin and actin in the formation and maintenance of hair and skin, which include highly active processes in mammalian life with respect to the cellular proliferation, differentiation, and movement. The localization of nonmuscle myosin II and actin in neonatal rat dorsal skin, mystacial pad, hair follicles, and vibrissal follicles was studied by immunohistochemical technique to provide the basis for the elucidation of the roles of these proteins. Specificities of the antibodies were verified by using samples from the relevant tissues and subjecting them to immunoblotting test prior to morphological analyses. The myosin and actin were abundant and colocalized in the spinous and granular layers but scarce in the basal layer of the dorsal and mystacial epidermis. In hair and vibrissal follicles, nonmuscle myosin and actin were colocalized in the outer root sheath and some hair matrix cells adjoining dermal papillae. In contrast, most areas of the inner root sheath and hair matrix appeared to comprise very small amounts of myosin and actin. Hair shaft may comprise significant myosin during the course of its keratinization. These results suggest that the actin-myosin system plays a part in cell movement, differentiation, protection and other key functions of skin and hair cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steady and Temporary Expressions of Smooth Muscle Actin in Hair, Vibrissa, Arrector Pili Muscle, and Other Hair Appendages of Developing Rats

The hair erection muscle, arrector pili, is a kind of smooth muscle located in the mammalian dermis. The immunohistochemical study using an antibody against smooth muscle alpha actin (SMA) showed that the arrector pili muscle develops approximately 1-2 weeks after birth in dorsal and ventral skin, but thereafter they degenerate. The arrector pili muscle was not detected in the mystacial pad dur...

متن کامل

Histological studies of whisker regeneration in the hooded rat.

It has been shown that generations of rat vibrissae of normal or nearly normal length are produced after the removal of dermal papillae from vibrissa follicles and that even after removal of lengths of the lower end of the follicle (' root ends') regeneration of shorter than normal whiskers may occur. There seemed to be a certain maximal length, approximately one-third of the follicle, which co...

متن کامل

Whn and mHa3 are components of the genetic hierarchy controlling hair follicle differentiation

The molecular basis of the characteristic hair growth disorder in nude mice that carry a defective Whn transcription factor gene is unknown. A comparison of mRNA populations from wild-type and nude mice back skin by representational difference analysis revealed the absence of acidic hair keratin gene 3 (mHa3) mRNA in mutant mice. Whn and acidic hair keratin genes are co-expressed in hair follic...

متن کامل

Single dose gamma irradiation induced angiogenesis in rat skin hair follicles

Background: Hair follicle cycling usually associated with prominent changes in skin vascularization; through follicular dermal papilla production of angiogenic factors. The early response of hair follicles to ionizing irradiation (IR) is induction of early anagen hair and appearance of new hair formation. Material and Method: Fifty rats were equally divided into 2 groups; control and γ-rays (10...

متن کامل

In situ patch-clamp recordings from Merkel cells in rat whisker hair follicles, an experimental protocol for studying tactile transduction in tactile-end organs

Mammals use tactile end-organs to perform sensory tasks such as environmental exploration, social interaction, and tactile discrimination. However, cellular and molecular mechanisms underlying tactile transduction in tactile end-organs remain poorly understood. The patch-clamp recording technique may be the most valuable approach for detecting and studying tactile transduction in tactile end-or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2006