Improving Neural Knowledge Base Completion with Cross-Lingual Projections
نویسندگان
چکیده
In this paper we present a cross-lingual extension of a neural tensor network model for knowledge base completion. We exploit multilingual synsets from BabelNet to translate English triples to other languages and then augment the reference knowledge base with cross-lingual triples. We project monolingual embeddings of different languages to a shared multilingual space and use them for network initialization (i.e., as initial concept embeddings). We then train the network with triples from the cross-lingually augmented knowledge base. Results on WordNet link prediction show that leveraging cross-lingual information yields significant gains over exploiting only monolingual triples.
منابع مشابه
Neuron Mathematical Model Representation of Neural Tensor Network for RDF Knowledge Base Completion
In this paper, a state-of-the-art neuron mathematical model of neural tensor network (NTN) is proposed to RDF knowledge base completion problem. One of the difficulties with the parameter of the network is that representation of its neuron mathematical model is not possible. For this reason, a new representation of this network is suggested that solves this difficulty. In the representation, th...
متن کاملOne-Shot Neural Cross-Lingual Transfer for Paradigm Completion
We present a novel cross-lingual transfer method for paradigm completion, the task of mapping a lemma to its inflected forms, using a neural encoder-decoder model, the state of the art for the monolingual task. We use labeled data from a high-resource language to increase performance on a lowresource language. In experiments on 21 language pairs from four different language families, we obtain ...
متن کاملAnnotation Projection-based Representation Learning for Cross-lingual Dependency Parsing
Cross-lingual dependency parsing aims to train a dependency parser for an annotation-scarce target language by exploiting annotated training data from an annotation-rich source language, which is of great importance in the field of natural language processing. In this paper, we propose to address cross-lingual dependency parsing by inducing latent crosslingual data representations via matrix co...
متن کاملLearning a Cross-Lingual Semantic Representation of Relations Expressed in Text
Learning cross-lingual semantic representations of relations from textual data is useful for tasks like cross-lingual information retrieval and question answering. So far, research has been mainly focused on cross-lingual entity linking, which is confined to linking between phrases in a text document and their corresponding entities in a knowledge base but cannot link to relations. In this pape...
متن کاملCross-Lingual Cross-Document Coreference with Entity Linking
This paper describes our approach to the 2011 Text Analysis Conference (TAC) Knowledge Base Population (KBP) cross-lingual entity linking problem. We recast the problem of entity linking as one of cross-document entity coreference. We compare an approach where deductive entity linking informs crossdocument coreference to an inductive approach where coreference and linking judgements are mutuall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017