Synonymous codon usage in Escherichia coli: selection for translational accuracy.

نویسندگان

  • Nina Stoletzki
  • Adam Eyre-Walker
چکیده

In many organisms, selection acts on synonymous codons to improve translation. However, the precise basis of this selection remains unclear in the majority of species. Selection could be acting to maximize the speed of elongation, to minimize the costs of proofreading, or to maximize the accuracy of translation. Using several data sets, we find evidence that codon use in Escherichia coli is biased to reduce the costs of both missense and nonsense translational errors. Highly conserved sites and genes have higher codon bias than less conserved ones, and codon bias is positively correlated to gene length and production costs, both indicating selection against missense errors. Additionally, codon bias increases along the length of genes, indicating selection against nonsense errors. Doublet mutations or replacement substitutions do not explain our observations. The correlations remain when we control for expression level and for conflicting selection pressures at the start and end of genes. Considering each amino acid by itself confirms our results. We conclude that selection on synonymous codon use in E. coli is largely due to selection for translational accuracy, to reduce the costs of both missense and nonsense errors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias.

Genes sequences from Escherichia coli, Salmonella typhimurium, and other members of the Enterobacteriaceae show a negative correlation between the degree of synonymous-codon usage bias and the rate of nucleotide substitution at synonymous sites. In particular, very highly expressed genes have very biased codon usage and accumulate synonymous substitutions very slowly. In contrast, there is litt...

متن کامل

Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli

The relationship between gene length and synonymous codon usage bias was investigated in Drosophila melanogaster, Escherichia coli and Saccharomyces cerevisiae. Simulation studies indicate that the correlations observed in the three organisms are unlikely to be due to sampling errors or any potential bias in the methods used to measure codon usage bias. The correlation was significantly positiv...

متن کامل

Intragenic spatial patterns of codon usage bias in prokaryotic and eukaryotic genomes.

To study the roles of translational accuracy, translational efficiency, and the Hill-Robertson effect in codon usage bias, we studied the intragenic spatial distribution of synonymous codon usage bias in four prokaryotic (Escherichia coli, Bacillus subtilis, Sulfolobus tokodaii, and Thermotoga maritima) and two eukaryotic (Saccharomyces cerevisiae and Drosophila melanogaster) genomes. We genera...

متن کامل

Synonymous substitution rates in enterobacteria.

It has been shown previously that the synonymous substitution rate between Escherichia coli and Salmonella typhimurium is lower in highly than in weakly expressed genes, and it has been suggested that this is due to stronger selection for translational efficiency in highly expressed genes as reflected in their greater codon usage bias. This hypothesis is tested here by comparing the substitutio...

متن کامل

Nucleotide substitution rate estimation in enterobacteria: approximate and maximum-likelihood methods lead to similar conclusions.

Synonymous mutations are ‘‘silent’’ with regard to the amino acid sequence of a protein, but a wealth of evidence indicates that, at least in species with large effective population sizes, synonymous mutations are subject to translational selection (Akashi and EyreWalker 1998). One line of evidence for translational selection has been the perceived negative correlation between codon bias and sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 24 2  شماره 

صفحات  -

تاریخ انتشار 2007