Point-joint Coordinate Formulation for the Dynamic Analysis of Generalised Planar Linkages

نویسندگان

  • HAZEM ALI ATTIA
  • Hazem Ali Attia
چکیده

This paper presents a two-step formulation for the dynamic analysis of generalised planar linkages. First, a rigid body is replaced by a dynamically equivalent constrained system of particles and Newton’s second law is used to study the motion of the particles without introducing any rotational coordinates. The translational motion of the constrained particles represents the general motion of the rigid body both translationally and rotationally. The simplicity and the absence of any rotational coordinates from the final form of the equations of motion are considered the main advantages of this formulation. A velocity transformation is then used to transform the equations of motion to a reduced set in terms of selected relative joint variables. For an open-chain, this process automatically eliminates all of the non-working constraint forces and leads to efficient integration of the equations of motion. For a closed-chain, suitable joints should be cut and some cut-joint constraint equations should be included. An example of a closed-chain is used to demonstrate the generality and efficiency of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Behavior Analysis of a Planar Four-bar Linkage with Multiple Clearances Joint

 In practice, clearances in the joints are inevitable due to tolerances, and defects arising from design and manufacturing. In the presence of clearance at a joint, a mechanism gains some additional, uncontrollable degrees of freedom which are the source of error. Moreover, joints undergo wear and backlashes and so cannot be used in precision mechanisms. In this study, the dynamic behaviour of ...

متن کامل

Energy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking

In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...

متن کامل

A Variational Approach for the Design of the Spatial Four-Bar Mechanism

An analytical formulation for computing kinematic sensitivity of the spatial four-bar mechanism is presented. The experimental code developed is used to compute an assembled configuration for the mechanism due to a design variation. The mechanism is modeled using graph theory where a body is defined as a node and a kinematic joint is defined as an edge. The spherical joint is cut to convert the...

متن کامل

Dynamic Response Analysis of the Planar and Tubular Solid Oxide Fuel Cells to the Inlet Air Mass Flow Rate Variation

The purpose of present study is to investigate the dynamic response of two conventional types of solid oxide fuel cells to the inlet air mass flow rate variation. A dynamic compartmental model based on CFD principles is developed for two typical planar and tubular SOFC designs. The model accounts for transport processes (heat and mass transfer), diffusion processes, electrochemical processes, a...

متن کامل

Comparison of generalised and directed co-contraction of knee joint muscles during four different movements to strengthen the quadriceps

Background: The determinant role of different movements to strengthen the quadriceps on rate of knee joint co-contraction, hamstring to quadriceps muscle activity ratio and vastus medialis to vastus lateralis muscle activity ratio provides useful information for therapists, coaches and athletes about the role of each movement in the rehabilitation of patients with anterior cruc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005