Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry
نویسندگان
چکیده
Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry (ICPMS) for chemical characterization. The aF4-ICPMS conditions were optimised and validated for linearity, limit of detection, recovery, repeatability and reproducibility, all indicating good performance. Multi-element detection with aF4-ICPMS showed that some commercial pigments contained zirconium co-eluting with titanium in aF4. The other two TiMs, NM103 and NM104, contained aluminium as integral part of the titanium peak eluting in aF4. The materials were characterised using various size determination techniques: retention time in aF4, aF4 hyphenated with multi-angle laser light spectrometry (MALS), single particle ICPMS (spICPMS), scanning electron microscopy (SEM) and particle tracking analysis (PTA). PTA appeared inappropriate. For the other techniques, size distribution patterns were quite similar, i.e. high polydispersity with diameters from 20 to >700 nm, a modal peak between 200 and 500 nm and a shoulder at 600 nm. Number-based size distribution techniques as spICPMS and SEM showed smaller modal diameters than aF4-UV, from which mass-based diameters are calculated. With aF4-MALS calculated, light-scattering-based "diameters of gyration" (Øg) are similar to hydrodynamic diameters (Øh) from aF4-UV analyses and diameters observed with SEM, but much larger than with spICPMS. A Øg/Øh ratio of about 1 indicates that the TiMs are oblate spheres or fractal aggregates. SEM observations confirm the latter structure. The rationale for differences in modal peak diameter is discussed.
منابع مشابه
Characterization of colloidal arsenic at two abandoned gold mine sites in Nova Scotia, Canada, using asymmetric flow-field flow fractionation-inductively coupled plasma mass spectrometry.
Asymmetric flow-field flow fractionation-inductively-coupled plasma-mass spectrometry was used to determine whether colloidal arsenic (As) exists in soil pore water and soil extract samples at two arsenic-contaminated abandoned gold mines (Montague and Goldenville, Nova Scotia). Colloidal arsenic was found in 12 out of the 80 collected samples (=15%), and was primarily associated with iron (Fe)...
متن کاملFractionation and Characterization of High Aspect Ratio Gold Nanorods Using Asymmetric-Flow Field Flow Fractionation and Single Particle Inductively Coupled Plasma Mass Spectrometry
Gold nanorods (GNRs) are of particular interest for biomedical applications due to their unique size-dependent longitudinal surface plasmon resonance band in the visible to near-infrared. Purified GNRs are essential for the advancement of technologies based on these materials. Used in concert, asymmetric-flow field flow fractionation (A4F) and single particle inductively coupled mass spectromet...
متن کاملCharacterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry.
The ability to detect and identify the physiochemical form of contaminants in the environment is important for degradation, fate and transport, and toxicity studies. This is particularly true of nanomaterials that exist as discrete particles rather than dissolved or sorbed contaminant molecules in the environment. Nanoparticles will tend to agglomerate or dissolve, based on solution chemistry, ...
متن کاملDetermination of traces of radionuclides by hyphenated techniques coupled to inductively coupled plasma mass spectrometry (ICP-MS) Determinació de traces de radionúclids emprant tècniques acoblades a l’espectrometria de masses i plasma induït per alta freqüència (ICP-MS)
An overview is given of the current state of the art for the determination of radionuclide traces in the environment and the separation of fission products and actinides in nuclear samples by techniques like flow-injection (FI)/sequential injection analysis (SIA) and chromatography hyphenated to inductively coupled plasma mass spectrometry (ICP-MS).
متن کاملFirst steps towards a generic sample preparation scheme for inorganic engineered nanoparticles in a complex matrix for detection, characterization, and quantification by asymmetric flow-field flow fractionation coupled to multi-angle light scattering and ICP-MS
1286 | J. Anal. At. Spectrom., 2015, 30, ds a generic sample preparation scheme for inorganic engineered nanoparticles in a complex matrix for detection, characterization, and quantification by asymmetric flow-field flow fractionation coupled to multi-angle light scattering and ICP-MS† S. Wagner, S. Legros, K. Loeschner, J. Liu, J. Navratilova, R. Grombe, T. P. J. Linsinger, E. H. Larsen, F. vo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 408 شماره
صفحات -
تاریخ انتشار 2016