FIMI’03: Workshop on Frequent Itemset Mining Implementations

نویسندگان

  • Bart Goethals
  • Mohammed J. Zaki
چکیده

The efficiency of frequent itemset mining algorithms is determined mainly by three factors: the way candidates are generated, the data structure that is used and the implementation details. Most papers focus on the first factor, some describe the underlying data structures, but implementation details are almost always neglected. In this paper we show that the effect of implementation can be more important than the selection of the algorithm. Ideas that seem to be quite promising, may turn out to be ineffective if we descend to the implementation level. We theoretically and experimentally analyze APRIORI which is the most established algorithm for frequent itemset mining. Several implementations of the algorithm have been put forward in the last decade. Although they are implementations of the very same algorithm, they display large differences in running time and memory need. In this paper we describe an implementation of APRIORI that outperforms all implementations known to us. We analyze, theoretically and experimentally, the principal data structure of our solution. This data structure is the main factor in the efficiency of our implementation. Moreover, we present a simple modification of APRIORI that appears to be faster than the original algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

nonordfp: An FP-growth variation without rebuilding the FP-tree

We describe a frequent itemset mining algorithm and implementation based on the well-known algorithm FPgrowth. The theoretical difference is the main data structure (tree), which is more compact and which we do not need to rebuild for each conditional step. We thoroughly deal with implementation issues, data structures, memory layout, I/O and library functions we use to achieve comparable perfo...

متن کامل

Improving Direct Counting for Frequent Itemset Mining

During the last ten years, many algorithms have been proposed to mine frequent itemsets. In order to fairly evaluate their behavior, the IEEE/ICDM Workshop on Frequent Itemset Mining Implementations (FIMI’03) has been recently organized. According to its analysis, kDCI++ is a state-of-the-art algorithm. However, it can be observed from the FIMI’03 experiments that its efficient behavior does no...

متن کامل

Proceedings of FIMI'03 Workshop on Frequent Itemset Mining Implementations

The efficiency of frequent itemset mining algorithms is determined mainly by three factors: the way candidates are generated, the data structure that is used and the implementation details. Most papers focus on the first factor, some describe the underlying data structures, but implementation details are almost always neglected. In this paper we show that the effect of implementation can be mor...

متن کامل

On compressing frequent patterns q

A major challenge in frequent-pattern mining is the sheer size of its mining results. To compress the frequent patterns, we propose to cluster frequent patterns with a tightness measure d (called d-cluster), and select a representative pattern for each cluster. The problem of finding a minimum set of representative patterns is shown NP-Hard. We develop two greedy methods, RPglobal and RPlocal. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003