Frameworks with crystallographic symmetry.

نویسندگان

  • Ciprian S Borcea
  • Ileana Streinu
چکیده

Periodic frameworks with crystallographic symmetry are investigated from the perspective of a general deformation theory of periodic bar-and-joint structures in Euclidean spaces of arbitrary dimension. It is shown that natural parametrizations provide affine section descriptions for families of frameworks with a specified graph and symmetry. A simple geometrical setting for displacive phase transitions is obtained. Upper bounds are derived for the number of realizations of minimally rigid periodic graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Almost Periodic Rigidity of Crystallographic Bar-Joint Frameworks

A crystallographic bar-joint framework, C in R, is shown to be almost periodically infinitesimally rigid if and only if it is strictly periodically infinitesimally rigid and the rigid unit mode (RUM) spectrum, Ω(C), is a singleton. Moreover, the almost periodic infinitesimal flexes of C are characterised in terms of a matrix-valued function, ΦC(z), on the d-torus, T, determined by a full rank t...

متن کامل

Crystal frameworks, symmetry and affinely periodic flexes

Symmetry equations are obtained for the rigidity matrices associated with various forms of infinitesimal flexibility for an idealised bond-node crystal framework C in R. These equations are used to derive symmetry-adapted Maxwell–Calladine counting formulae for periodic self-stresses and affinely periodic infinitesimal mechanisms. The symmetry equations also lead to general Fowler–Guest formula...

متن کامل

Structures of Metal-Organic Frameworks with Rod Secondary Building Units.

Rod MOFs are metal-organic frameworks in which the metal-containing secondary building units consist of infinite rods of linked metal-centered polyhedra. For such materials, we identify the points of extension, often atoms, which define the interface between the organic and inorganic components of the structure. The pattern of points of extension defines a shape such as a helix, ladder, helical...

متن کامل

Non-Crystallographic Symmetry in Packing Spaces

In the following, isomorphism of an arbitrary finite group of symmetry, non-crystallographic symmetry (quaternion groups, Pauli matrices groups, and other abstract subgroups), in addition to the permutation group, are considered. Application of finite groups of permutations to the packing space determines space tilings by policubes (polyominoes) and forms a structure. Such an approach establish...

متن کامل

Perspective: Theory and simulation of hybrid halide perovskites

Organic-inorganic halide perovskites present a number of challenges for first-principles atomistic materials modeling. Such "plastic crystals" feature dynamic processes across multiple length and time scales. These include the following: (i) transport of slow ions and fast electrons; (ii) highly anharmonic lattice dynamics with short phonon lifetimes; (iii) local symmetry breaking of the averag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 372 2008  شماره 

صفحات  -

تاریخ انتشار 2014