The mechanism of proton exclusion in aquaporin channels.

نویسندگان

  • Boaz Ilan
  • Emad Tajkhorshid
  • Klaus Schulten
  • Gregory A Voth
چکیده

The mechanism of proton exclusion in aquaporin channels is elucidated through free energy calculations of the pathway of proton transport. The second generation multistate empirical valence bond (MS-EVB2) model was applied to simulate the interaction of an excess proton with the channel environment. Jarzynski's equality was employed for rapid convergence of the free energy profile. A barrier sufficiently high to block proton transport is located near the channel center at the NPA motif-a site involved in bi-orientational ordering of the embedded water-wire in absence of the excess proton. A second and lower barrier is observed at the selectivity filter near the periplasmic outlet where the channel is narrowest. This secondary barrier may be essential in filtering other large solutes and cations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The dynamics and energetics of water permeation and proton exclusion in aquaporins.

Aquaporins and aquaglyceroporins are passive membrane channels that, in many species, facilitate highly efficient yet strictly selective permeation of water and small solutes across lipid bilayers. Their ability to block proton flux is particularly remarkable, because other aqueous pores and water efficiently conduct protons, via the so-called Grotthuss mechanism. How efficient water permeation...

متن کامل

Selectivity and conductance among the glycerol and water conducting aquaporin family of channels.

The atomic structures of a transmembrane water plus glycerol conducting channel (GlpF), and now of aquaporin Z (AqpZ) from the same species, Escherichia coli, bring the total to three atomic resolution structures in the aquaporin (AQP) family. Members of the AQP family each assemble as tetramers of four channels. Common helical axes support a wider channel in the glycerol plus water channel par...

متن کامل

The mechanism of proton exclusion in the aquaporin-1 water channel.

Aquaporins are efficient, yet strictly selective water channels. Remarkably, proton permeation is fully blocked, in contrast to most other water-filled pores which are known to conduct protons well. Blocking of protons by aquaporins is essential to maintain the electrochemical gradient across cellular and subcellular membranes. We studied the mechanism of proton exclusion in aquaporin-1 by mult...

متن کامل

Charge delocalization in proton channels, I: the aquaporin channels and proton blockage.

The explicit contribution to the free energy barrier and proton conductance from the delocalized nature of the excess proton is examined in aquaporin channels using an accurate all-atom molecular dynamics computer simulation model. In particular, the channel permeation free energy profiles are calculated and compared for both a delocalized (fully Grotthuss shuttling) proton and a classical (non...

متن کامل

Enhancement of the Cooling System Performance of the Proton-exchange Membrane Fuel Cell By Baffle-restricted Coolant Flow Channels

The performance of proton-exchange membrane fuel cell cooling system using coolant flow channels enhanced with baffles was numerically investigated. To do this, the maximum temperature of the cooling plate, temperature uniformity and also pressure drop along the flow channels were compared for different cases associated with number of baffles and their dimensions inside the channels. The govern...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proteins

دوره 55 2  شماره 

صفحات  -

تاریخ انتشار 2004