Estimation of a nonparametric regression spectrum for multivariate time series
نویسندگان
چکیده
Estimation of a nonparametric regression spectrum based on the periodogram is considered. Neither trend estimation nor smoothing of the periodogram are required. Alternatively, for cases where spectral estimation of phase shifts fails and the shift does not depend on frequency, a time domain estimator of the lag-shift is defined. Asymptotic properties of the frequency and time domain estimators are derived. Simulations and a data example illustrate the methods.
منابع مشابه
A nonparametric regression cross spectrum for multivariate time series
We consider dependence structures in multivariate time series that are characterized by deterministic trends. Results from spectral analysis for stationary processes are extended to deterministic trend functions. A regression cross covariance and spectrum are defined. Estimation of these quantities is based on wavelet thresholding. The method is illustrated by a simulated example and a three-di...
متن کاملA Nonparametric Regression Spectrum : Estimation, Asymptotic Properties and Data Analysis
Classical spectral analysis in statistics considers decomposition of stationary time series into sinusoidal components. The autocovariance and the spectrum are fundamental elements for analyzing a given time series both in time and frequency domain. However, in practice one frequently observes nonstationary time series. In order to apply spectral analysis to these processes, an extension of the...
متن کاملSpectral Estimation of Stationary Time Series: Recent Developments
Spectral analysis considers the problem of determining (the art of recovering) the spectral content (i.e., the distribution of power over frequency) of a stationary time series from a finite set of measurements, by means of either nonparametric or parametric techniques. This paper introduces the spectral analysis problem, motivates the definition of power spectral density functions, and reviews...
متن کاملA Class of Nonparametric Volatility Models: Applications to Financial Time Series
In this paper, we first examine several volatility models in the literature. We then estimate financial volatility using multivariate adaptive regression splines (MARS) by logarithmic transformation as a preliminary analysis to examine a nonparametric volatility model. Despite its popularity, MARS has never been applied to model financial volatility. To implement the MARS methodology in a time ...
متن کاملA New Nonparametric Regression for Longitudinal Data
In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007