Learning of Agent Capability Models with Applications in Multi-agent Planning

نویسندگان

  • Yu Zhang
  • Subbarao Kambhampati
چکیده

One important challenge for a set of agents to achieve more efficient collaboration is for these agents to maintain proper models of each other. An important aspect of these models of other agents is that they are often partial and incomplete. Thus far, there are two common representations of agent models: MDP based and action based, which are both based on action modeling. In many applications, agent models may not have been given, and hence must be learnt. While it may seem convenient to use either MDP based or action based models for learning, in this paper, we introduce a new representation based on capability models, which has several unique advantages. First, we show that learning capability models can be performed efficiently online via Bayesian learning, and the learning process is robust to high degrees of incompleteness in plan execution traces (e.g., with only start and end states). While high degrees of incompleteness in plan execution traces presents learning challenges for MDP based and action based models, capability models can still learn to abstract useful information out of these traces. As a result, capability models are useful in applications in which such incompleteness is common, e.g., robot learning human model from observations and interactions. Furthermore, when used in multi-agent planning (with each agent modeled separately), capability models provide flexible abstraction of actions. The limitation, however, is that the synthesized plan is incomplete and abstract.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capability Models and Their Applications in Planning

One important challenge for a set of agents to achieve more efficient collaboration is for these agents to maintain proper models of each other. An important aspect of these models of other agents is that they are often not provided, and hence must be learned from plan execution traces. As a result, these models of other agents are inherently partial and incomplete. Most existing agent models a...

متن کامل

Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs

Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...

متن کامل

Improving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning

In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...

متن کامل

Voltage Coordination of FACTS Devices in Power Systems Using RL-Based Multi-Agent Systems

This paper describes how multi-agent system technology can be used as the underpinning platform for voltage control in power systems. In this study, some FACTS (flexible AC transmission systems) devices are properly designed to coordinate their decisions and actions in order to provide a coordinated secondary voltage control mechanism based on multi-agent theory. Each device here is modeled as ...

متن کامل

An Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources

This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1411.1112  شماره 

صفحات  -

تاریخ انتشار 2014