Rigidity, locally symmetric varieties and the Grothendieck-Katz Conjecture
نویسندگان
چکیده
Using Margulis’s results on lattices in semisimple Lie groups, we prove the GrothendieckKatz p-Curvature Conjecture for many locally symmetric varieties, including HilbertBlumenthal modular varieties and the moduli space of abelian varieties Ag when g > 1.
منابع مشابه
The Grothendieck-Katz Conjecture for certain locally symmetric varieties
Using Margulis’s results on lattices in semisimple Lie groups, we prove the GrothendieckKatz p-Curvature Conjecture for certain locally symmetric varieties, including the moduli space of abelian varieties Ag when g > 1.
متن کاملToric Varieties with Huge Grothendieck Group
In each dimension n ≥ 3 there are many projective simplicial toric varieties whose Grothendieck groups of vector bundles are at least as big as the ground field. In particular, the conjecture that the Grothendieck groups of locally trivial sheaves and coherent sheaves on such varieties are rationally isomorphic fails badly.
متن کاملDifferential algebra and generalizations of Grothendieck’s conjecture on the arithmetic of linear differential equations
We prove that a nonlinear version of the Grothendieck-Katz conjecture (essentially in the form given by Ekhedahl, Shepherd-Barron and Taylor) is equivalent to the original Grothendieck-Katz conjecture together with a certain differential algebraic geometric/model-theoretic statement: a type over C(t) with “p-curvature 0 for almost all p” is nonorthogonal to the constants.
متن کاملAnabelian Intersection Theory I: the Conjecture of Bogomolov-pop and Applications
A. Grothendieck first coined the term “anabelian geometry” in a letter to G. Faltings [Gro97a] as a response to Faltings’ proof of the Mordell conjecture and in his celebrated Esquisse d’un Programme [Gro97b]. The “yoga” of Grothendieck’s anabelian geometry is that if the étale fundamental group πét 1 pX,xq of a variety X at a geometric point x is rich enough, then it should encode much of the ...
متن کاملÉtale Cohomology, Lefschetz Theorems and Number of Points of Singular Varieties over Finite Fields
We prove a general inequality for estimating the number of points of arbitrary complete intersections over a finite field. This extends a result of Deligne for nonsingular complete intersections. For normal complete intersections, this inequality generalizes also the classical Lang-Weil inequality. Moreover, we prove the Lang-Weil inequality for affine as well as projective varieties with an ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009