Analysis of spectral clustering algorithms for community detection: the general bipartite setting
نویسندگان
چکیده
We consider the analysis of spectral clustering algorithms for community detection under a stochastic block model (SBM). A general spectral clustering algorithm consists of three steps: (1) regularization of an appropriate adjacency or Laplacian matrix (2) a form of spectral truncation and (3) a k-means type algorithm in the reduced spectral domain. By varying each step, one can obtain different spectral algorithms. In light of the recent developments in refining consistency results for the spectral clustering, we identify the necessary bounds at each of these three steps, and then derive and compare consistency results for some existing spectral algorithms as well as a new variant that we propose. The focus of the paper is on providing a better understanding of the analysis of spectral methods for community detection, with an emphasis on the bipartite setting which has received less theoretical consideration. We show how the variations in the spectral truncation step reflects in the consistency results under a general SBM. We also investigate the necessary bounds for the k-means step in some detail, allowing one to replace this step with any algorithm (k-means type or otherwise) that guarantees the necessary bound. We discuss some of the neglected aspects of the bipartite setting, e.g., the role of the mismatch between the communities of the two sides on the performance of spectral methods. Finally, we show how the consistency results can be extended beyond SBMs to the problem of clustering inhomogeneous random graph models that can be approximated by SBMs in a certain sense.
منابع مشابه
Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملتشخیص اجتماعات ترکیبی در شبکههای اجتماعی
One of the great challenges in Social Network Analysis (SNA) is community detection. Community is a group of vertices which have high intra connections and sparse inter connections. Community detection or Clustering reveals community structure of social networks and hidden relationships among their constituents. By considering the increase of datasets related to social networks, we need scalabl...
متن کاملOptimal Bipartite Network Clustering
We consider the problem of bipartite community detection in networks, or more generally the network biclustering problem. We present a fast two-stage procedure based on spectral initialization followed by the application of a pseudo-likelihood classifier twice. Under mild regularity conditions, we establish the weak consistency of the procedure (i.e., the convergence of the misclassification ra...
متن کاملAn Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks
The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering...
متن کاملFinding Community Base on Web Graph Clustering
Search Pointers organize the main part of the application on the Internet. However, because of Information management hardware, high volume of data and word similarities in different fields the most answers to the user s’ questions aren`t correct. So the web graph clustering and cluster placement in corresponding answers helps user to achieve his or her intended results. Community (web communit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018