Few-Shot Learning with Graph Neural Networks
نویسندگان
چکیده
We propose to study the problem of few-shot learning with the prism of inference on a partially observed graphical model, constructed from a collection of input images whose label can be either observed or not. By assimilating generic message-passing inference algorithms with their neural-network counterparts, we define a graph neural network architecture that generalizes several of the recently proposed few-shot learning models. Besides providing improved numerical performance, our framework is easily extended to variants of few-shot learning, such as semi-supervised or active learning, demonstrating the ability of graph-based models to operate well on ‘relational’ tasks.
منابع مشابه
Iclr 2018 F Ew - S Hot L Earning with G Raph N Eural N Et - Works
We propose to study the problem of few-shot learning with the prism of inference on a partially observed graphical model, constructed from a collection of input images whose label can be either observed or not. By assimilating generic message-passing inference algorithms with their neural-network counterparts, we define a graph neural network architecture that generalizes several of the recentl...
متن کاملModelling of Conventional and Severe Shot Peening Influence on Properties of High Carbon Steel via Artificial Neural Network
Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conv...
متن کاملSiamese Networks for One Shot Learning using Kernel Based Activation functions
The lack of a large amount of training data has always been the constraining factor in solving a lot of problems in machine learning, making One Shot Learning one of the most intriguing ideas in machine learning. It aims to learn information about object categories from one, or only a few, training examples, and for certain image classification tasks, has successfully been able to get results c...
متن کاملMake Svm Great Again with Siamese Kernel for Few-shot Learning
While deep neural networks have shown outstanding results in a wide range of applications, learning from a very limited number of examples is still a challenging task. Despite the difficulties of the few-shot learning, metric-learning techniques showed the potential of the neural networks for this task. While these methods perform well, they don’t provide satisfactory results. In this work, the...
متن کاملMake Svm Great Again with Siamese Kernel for Few-shot Learning
While deep neural networks have shown outstanding results in a wide range of applications, learning from a very limited number of examples is still a challenging task. Despite the difficulties of the few-shot learning, metric-learning techniques showed the potential of the neural networks for this task. While these methods perform well, they don’t provide satisfactory results. In this work, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.04043 شماره
صفحات -
تاریخ انتشار 2017