Limits to compression with cascaded quadratic soliton compressors.

نویسندگان

  • M Bache
  • O Bang
  • W Krolikowski
  • J Moses
  • F W Wise
چکیده

We study cascaded quadratic soliton compressors and address the physical mechanisms that limit the compression. A nonlocal model is derived, and the nonlocal response is shown to have an additional oscillatory component in the nonstationary regime when the group-velocity mismatch (GVM) is strong. This inhibits efficient compression. Raman-like perturbations from the cascaded nonlinearity, competing cubic nonlinearities, higher-order dispersion, and soliton energy may also limit compression, and through realistic numerical simulations we point out when each factor becomes important. We find that it is theoretically possible to reach the single-cycle regime by compressing high-energy fs pulses for wavelengths lambda = 1.0-1.3 microm in a beta -barium-borate crystal, and it requires that the system is in the stationary regime, where the phase mismatch is large enough to overcome the detrimental GVM effects. however, the simulations show that reaching single-cycle duration is ultimately inhibited by competing cubic nonlinearities as well as dispersive waves, that only show up when taking higher-order dispersion into account.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities

We present a detailed study of soliton compression of ultra-short pulses based on phase-mismatched second-harmonic generation (i.e., the cascaded quadratic nonlinearity) in bulk quadratic nonlinear media. The single-cycle propagation equations in the temporal domain including higher-order nonlinear terms are presented. The balance between the quadratic (SHG) and the cubic (Kerr) nonlinearity pl...

متن کامل

Soliton compression to few-cycle pulses with a high quality factor by engineering cascaded quadratic nonlinearities.

We propose an efficient approach to improve few-cycle soliton compression with cascaded quadratic nonlinearities by using an engineered multi-section structure of the nonlinear crystal. By exploiting engineering of the cascaded quadratic nonlinearities, in each section soliton compression with a low effective order is realized, and high-quality few-cycle pulses with large compression factors ar...

متن کامل

1 9 A ug 2 00 7 Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression

We study soliton pulse compression in materials with cascaded quadratic nonlinearities and show that the group-velocity mismatch creates two different temporally nonlocal regimes. They correspond to what is known as the stationary and nonstationary regimes. The theory accurately predicts the transition to the stationary regime, where highly efficient pulse compression is possible. c © 2014 Opti...

متن کامل

Designing microstructured polymer optical fibers for cascaded quadratic soliton compression of femtosecond pulses

The dispersion of index-guiding microstructured polymer optical fibers is calculated for second-harmonic generation. The quadratic nonlinearity is assumed to come from poling of the polymer, which in this study is chosen to be the cyclic olefin copolymer Topas. We found a very large phase mismatch between the pump and the second-harmonic waves. Therefore the potential for cascaded quadratic sec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 16 5  شماره 

صفحات  -

تاریخ انتشار 2008