Hybrid systems analysis of the control of burst duration by low-voltage-activated calcium current in leech heart interneurons.

نویسندگان

  • Andrey Olypher
  • Gennady Cymbalyuk
  • Ronald L Calabrese
چکیده

The leech heartbeat CPG is paced by the alternating bursting of pairs of mutually inhibitory heart interneurons that form elemental half-center oscillators. We explore the control of burst duration in heart interneurons using a hybrid system, where a living, pharmacologically isolated, heart interneuron is connected with artificial synapses to a model heart interneuron running in real-time, by focusing on a low-voltage-activated (LVA) calcium current I(CaS). The transition from silence to bursting in this half-center oscillator occurs when the spike frequency of the bursting interneuron declines to a critical level, f(Final), at which the inhibited interneuron escapes owing to a build-up of the hyperpolarization-activated cation current, I(h). We varied I(CaS) inactivation time constant either in the living heart interneuron or in the model heart interneuron. In both cases, varying I(CaS) inactivation time constant did not affect f(Final) of either interneuron, but in the varied interneuron, the time constant of decline of spike frequency during bursts to f(Final) and thus the burst duration varied directly and nearly linearly with I(CaS) inactivation time constant. Bursts of the opposite, nonvaried interneuron did not change. We show also that control of burst duration by I(CaS) inactivation does not require synaptic interaction by reconstituting autonomous bursting in synaptically isolated living interneurons with injected I(CaS). Therefore inactivation of LVA calcium current is critically important for setting burst duration and thus period in a heart interneuron half-center oscillator and is potentially a general intrinsic mechanism for regulating burst duration in neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TITLE: Hybrid Systems Analysis of the Control of Burst Duration by Low-Voltage-Activated Calcium Current in Leech Heart Interneurons

The leech heartbeat CPG is paced by the alternating bursting of pairs of mutually inhibitory heart interneurons that form elemental half-center oscillators. We explore the control of burst duration in heart interneurons using a hybrid system, where a living, pharmacologically isolated, heart interneuron is connected with artificial synapses to a model heart interneuron (Hill et al. 2001) runnin...

متن کامل

Jean - Marc Goaillard and Eve Marder

[PDF] [Full Text] [Abstract] , October 15, 2006; 576 (2): 349-359. J. Physiol. R. Wilders Dynamic clamp: a powerful tool in cardiac electrophysiology [PDF] [Full Text] [Abstract] , December 1, 2006; 96 (6): 2857-2867. J Neurophysiol A. Olypher, G. Cymbalyuk and R. L. Calabrese Calcium Current in Leech Heart Interneurons Hybrid Systems Analysis of the Control of Burst Duration by Low-Voltage...

متن کامل

Myomodulin increases Ih and inhibits the NA/K pump to modulate bursting in leech heart interneurons.

In the medicinal leech, a rhythmically active 14-interneuron network composes the central pattern generator for heartbeat. In two segmental ganglia, bilateral pairs of reciprocally inhibitory heart interneurons (oscillator interneurons) produce a rhythm of alternating bursts of action potentials that paces activity in the pattern-generating network. The neuropeptide myomodulin decreases the per...

متن کامل

The effect of lead (Pb2+) on electrophysiological properties of calcium currents in F77 neuron in Helix aspersa

Ion channels are responsible for control of cell function in excitable tissues such as heart and brain and also in organs and tissues traditionally thought to be non- excitable including liver and epithelium. In the present research, the effect of lead (Pb2+) on Ca2+ -dependent action potential and currents was studied in F77 neuronal soma membrane of Helix aspersa. For this purpose, action pot...

متن کامل

Calcium currents and graded synaptic transmission between heart interneurons of the leech.

Synaptic transmission between reciprocally inhibitory heart interneurons (HN cells) of the medicinal leech was examined in the absence of Na-mediated action potentials. Under voltage clamp, depolarizing steps from a holding potential of -60 mV elicited 2 kinetically distinct components of inward current in the presynaptic HN cell: an early transient current that inactivates within 200 msec and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 96 6  شماره 

صفحات  -

تاریخ انتشار 2006