Optimal Bayesian Design Applied to Logistic Regression Experiments
نویسندگان
چکیده
A traditional way to design a binary response experiment is to design the experiment to be most efficient for a best guess of the parameter values. A design which is optimal for a best guess however may not be efficient for parameter values close to that best guess. We propose designs which formally account for the prior uncertainty in the parameter values. A design for a situation where the best guess has substantial uncertainty attached to it is very different from a design for a situation where approximate values of the parameters are known. We derive a general theory for concave design critria for non-linear models and then apply the theory to logistic regression. Designs found by numerical optimization are examined for a range of prior distributions and a range of criteria. The theoretical results are used to verify that the designs are indeed optimal. AMS Subject Classification: Primary 62KO5; Secondary 62F15.
منابع مشابه
An Efficient Bayesian Optimal Design for Logistic Model
Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...
متن کاملBayesian D-Optimal Design for Generalized Linear Models
(ABSTRACT) Bayesian optimal designs have received increasing attention in recent years, especially in biomedical and clinical trials. Bayesian design procedures can utilize the available prior information of the unknown parameters so that a better design can be achieved. However, a difficulty in dealing with the Bayesian design is the lack of efficient computational methods. In this research, a...
متن کاملPresentation of new ensemble method of Bayesian and logistic regression models in landslide susceptibility assessment in the Khalkhal Township
The aim of current research is to assess of landslide susceptibility in the Khalkhal Township, southern Ardabil using an ensemble and new method namely Bayesian and logistic regression (BT-LR) models. At first, landslide inventory map was prepared and then effective factors on landslide occurrence were identified. These factors are slope degree, plan curvature, slope aspect, elevation, landuse,...
متن کاملSample size determination for logistic regression
The problem of sample size estimation is important in medical applications, especially in cases of expensive measurements of immune biomarkers. This paper describes the problem of logistic regression analysis with the sample size determination algorithms, namely the methods of univariate statistics, logistics regression, cross-validation and Bayesian inference. The authors, treating the regr...
متن کاملبهکارگیری رگرسیون لجستیک بیزی برای تعیین عوامل خطر رتینوپاتی دیابتی
Background: Diabetes is one of the most common chronic diseases of this century. Retinopathy and makulopati are two most important implications of diabetes. In this study, Bayesian logistic regression is used to assess the factors affected on diabetic- retinopathy. Methods: Study population of this cross-sectional study contains all diabetic patients in Tehran of which 623 of them were selec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001