From Noise to Characterization Tool: Assessing Biases in Influenza Surveillance Methods Using a Bayesian Hierarchical Model

نویسندگان

  • Ying Zhang
  • Ali Arab
  • Michael A. Stoto
  • Bejamin J. Cowling
چکیده

and reproduction in any medium, provided the original work is properly cited.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing Influenza surveillance systems performance: application of a Bayesian hierarchical statistical model to Hong Kong surveillance data

BACKGROUND Infectious disease surveillance is a process the product of which reflects both actual disease trends and public awareness of the disease. Decisions made by patients, health care providers, and public health professionals about seeking and providing health care and about reporting cases to health authorities are all influenced by the information environment, which changes constantly....

متن کامل

A Bayesian Approach to Characterize Hong Kong Influenza Surveillance Systems

Introduction Syndromic surveillance has been widely used in influenza surveillance worldwide. However, despite the potential benefits created by the large volume of data, biases due to the changes in healthcare seeking behavior and physicians’ reporting behavior, as well as the background noise caused by seasonal flu epidemics, contribute to the complexity of the surveillance system and may lim...

متن کامل

A Disease Outbreak Prediction Model Using Bayesian Inference: A Case of Influenza

Introduction: One major problem in analyzing epidemic data is the lack of data and high dependency among the available data, which is due to the fact that the epidemic process is not directly observable. Methods: One method for epidemic data analysis to estimate the desired epidemic parameters, such as disease transmission rate and recovery rate, is data ...

متن کامل

Probabilistic Daily ILI Syndromic Surveillance with a Spatio-Temporal Bayesian Hierarchical Model

BACKGROUND For daily syndromic surveillance to be effective, an efficient and sensible algorithm would be expected to detect aberrations in influenza illness, and alert public health workers prior to any impending epidemic. This detection or alert surely contains uncertainty, and thus should be evaluated with a proper probabilistic measure. However, traditional monitoring mechanisms simply prov...

متن کامل

A Bayesian spatio‐temporal approach for real‐time detection of disease outbreaks: a case study

BACKGROUND For researchers and public health agencies, the complexity of high-dimensional spatio-temporal data in surveillance for large reporting networks presents numerous challenges, which include low signal-to-noise ratios, spatial and temporal dependencies, and the need to characterize uncertainties. Central to the problem in the context of disease outbreaks is a decision structure that re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014