Purification and Identification of Activating Enzymes of CS-0777, a Selective Sphingosine 1-Phosphate Receptor 1 Modulator, in Erythrocytes*

نویسندگان

  • Kiyoaki Yonesu
  • Kazuishi Kubota
  • Masakazu Tamura
  • Shin-ichi Inaba
  • Tomohiro Honda
  • Chizuko Yahara
  • Nobuaki Watanabe
  • Tatsuji Matsuoka
  • Futoshi Nara
چکیده

CS-0777 is a selective sphingosine 1-phosphate (S1P) receptor 1 modulator with potential benefits in the treatment of autoimmune diseases, including multiple sclerosis. CS-0777 is a prodrug that requires phosphorylation to an active S1P analog, similar to the first-in-class S1P receptor modulator FTY720 (fingolimod). We sought to identify the kinase(s) involved in phosphorylation of CS-0777, anticipating sphingosine kinase (SPHK) 1 or 2 as likely candidates. Unlike kinase activity for FTY720, which is found predominantly in platelets, CS-0777 kinase activity was found mainly in red blood cells (RBCs). N,N-Dimethylsphingosine, an inhibitor of SPHK1 and -2, did not inhibit CS-0777 kinase activity. We purified CS-0777 kinase activity from human RBCs by more than 10,000-fold using ammonium sulfate precipitation and successive chromatography steps, and we identified fructosamine 3-kinase (FN3K) and fructosamine 3-kinase-related protein (FN3K-RP) by mass spectrometry. Incubation of human RBC lysates with 1-deoxy-1-morpholinofructose, a competitive inhibitor of FN3K, inhibited ∼10% of the kinase activity, suggesting FN3K-RP is the principal kinase responsible for activation of CS-0777 in blood. Lysates from HEK293 cells overexpressing FN3K or FN3K-RP resulted in phosphorylation of CS-0777 and structurally related molecules but showed little kinase activity for FTY720 and no kinase activity for sphingosine. Substrate preference was highly correlated among FN3K, FN3K-RP, and rat RBC lysates. FN3K and FN3K-RP are known to phosphorylate sugar moieties on glycosylated proteins, but this is the first report that these enzymes can phosphorylate hydrophobic xenobiotics. Identification of the kinases responsible for CS-0777 activation will permit a better understanding of the pharmacokinetics and pharmacodynamics of this promising new drug.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VASCULAR BIOLOGY Endogenous EPCR/aPC-PAR1 signaling prevents inflammation-induced vascular leakage and lethality

Protease activated receptor 1 (PAR1) signaling can play opposing roles in sepsis, either promoting dendritic cell (DC)–dependent coagulation and inflammation or reducing sepsis lethality due to activated protein C (aPC) therapy. To further define this PAR1 paradox, we focused on the vascular effects of PAR1 signaling. Pharmacological perturbations of the intravascular coagulant balance were com...

متن کامل

Endogenous EPCR/aPC-PAR1 signaling prevents inflammation-induced vascular leakage and lethality.

Protease activated receptor 1 (PAR1) signaling can play opposing roles in sepsis, either promoting dendritic cell (DC)-dependent coagulation and inflammation or reducing sepsis lethality due to activated protein C (aPC) therapy. To further define this PAR1 paradox, we focused on the vascular effects of PAR1 signaling. Pharmacological perturbations of the intravascular coagulant balance were com...

متن کامل

Lack of sphingosine 1-phosphate-degrading enzymes in erythrocytes.

Platelets are known to store a large amount of the bioactive lipid molecule sphingosine 1-phosphate (S1P) and to release it into the plasma in a stimuli-dependent manner. Erythrocytes can also release S1P, independently from any stimuli. We measured the S1P and sphingosine (Sph) levels in erythrocytes by HPLC and found that the contribution of erythrocyte S1P to whole blood S1P levels is actual...

متن کامل

Point-counterpoint of sphingosine 1-phosphate metabolism.

Sphingosine 1-phosphate (S1P), an evolutionarily conserved bioactive lipid mediator, is now recognized as a potent modulator of cell regulation. In vertebrates, S1P interacts with cell surface G protein-coupled receptors of the EDG family and induces profound effects in a variety of organ systems. Indeed, an S1P receptor agonist is undergoing clinical trials to combat immune-mediated transplant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 286  شماره 

صفحات  -

تاریخ انتشار 2011