Separability and the Birkhoff-Gustavson Normalization of the Perturbed Harmonic Oscillators with Homogeneous Polynomial Potentials
نویسندگان
چکیده
In this paper, separability of the perturbed 2-dimensional isotropic harmonic oscillators with homogeneous polynomial potentials is characterized from their Birkhoff-Gustavson (BG) normalization, one of the conventional methods for non-integrable Hamiltonian systems.
منابع مشابه
0 From the Birkhoff - Gustavson normalization to the Bertrand - Darboux integrability condition † ‡ §
The Bertrand-Darboux integrability condition for a certain class of perturbed harmonic oscillators is studied from the viewpoint of the Birkhoff-Gustavson(BG)-normalization: By solving an inverse problem of the BG-normalization on computer algebra, it is shown that if the perturbed harmonic oscillator with a homogeneous cubic-polynomial potential and the perturbed harmonic oscillator with a hom...
متن کاملFrom the Birkhoff-Gustavson normalization to the Bertrand-Darboux integrability condition
The Bertrand-Darboux integrability condition for a certain class of perturbed harmonic oscillators is studied from the viewpoint of the BirkhoffGustavson(BG)-normalization: In solving an inverse problem of the BGnormalization on computer algebra, it is shown that if the perturbed harmonic oscillators with a homogeneous cubic-polynomial potential and with a homogeneous quartic-polynomial potenti...
متن کاملThe inverse problem of the Birkhoff - Gustavson normalization and ANFER , Algorithm of Normal Form Expansion and Restoration 1
In the series of papers [1-4], the inverse problem of the Birkhoff-Gustavson normalization was posed and studied. To solve the inverse problem, the symbolic-computing program named ANFER (Algorithm of Normal Form Expansion and Restoration) is written up, with which a new aspect of the Bertrand and Darboux integrability condition is found [1]. In this paper, the procedure in ANFER is presented i...
متن کاملThe Quadratic Zeeman Effect in Hydrogen: an Example of Semi-classical Quantization of a Strongly Non-separable but Almost Integrable System
Semi-classical quantization of multidimensional systems is discussed both in terms of the Einstein-Brillouin-Keller quantization on invariant tori, and in terms of infinite families of periodic orbits. The notions of separability, integrability, and non-integrability of classical systems are introduced. An approximate integrability is used to quantize the quadratic Zeeman problem, via analytic ...
متن کاملA Criterion of Integrability for Perturbed Nonresonant Harmonic Oscillators. "Wick Ordering" of the Perturbations in Classical Mechanics and Invariance of the Frequency Spectrum
We introduce an analogue to the renormalization theory (of quantum fields) into classical mechanics. We also find an integrability criterion guaranteeing the convergence of Birkhoff s series and an algorithm for modifying the hamiltonian to fix the frequency spectrum of the quasi-periodic motions. We point out its possible relevance to the transition to chaos.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003