Targeted disruption of Slc19a2, the gene encoding the high-affinity thiamin transporter Thtr-1, causes diabetes mellitus, sensorineural deafness and megaloblastosis in mice.

نویسندگان

  • Kimihiko Oishi
  • Susanna Hofmann
  • George A Diaz
  • Tartania Brown
  • Deepa Manwani
  • Lily Ng
  • Randy Young
  • Helen Vlassara
  • Yiannis A Ioannou
  • Douglas Forrest
  • Bruce D Gelb
چکیده

Thiamin-responsive megaloblastic anemia syndrome (TRMA) is characterized by diabetes mellitus, megaloblastic anemia and sensorineural deafness. Mutations in the thiamin transporter gene SLC19A2 cause TRMA. To generate a mouse model of TRMA, we developed an Slc19a2 targeting construct using transposon-mediated mutagenesis and disrupted the gene through homologous recombination in embryonic stem cells. Erythrocytes from Slc19a2(-/-) mice lacked the high-affinity component of thiamin transport. On a thiamin-free diet, Slc19a2(-/-) mice developed diabetes mellitus with reduced insulin secretion and an enhanced response to insulin. The diabetes mellitus resolved after 6 weeks of thiamin repletion. Auditory-evoked brainstem response thresholds were markedly elevated in Slc19a2(-/-) mice on a thiamin-free diet, but were normal in wild-type mice treated on that diet as well as thiamin-fed Slc19a2(-/-) mice. Bone marrows from thiamin-deficient Slc19a2(-/-) mice were abnormal, with a megaloblastosis affecting the erythroid, myeloid and megakaryocyte lines. Thus, Slc19a2(-/-) mice have provided new insights into the TRMA disease pathogenesis and will provide a tool for studying the role of thiamin homeostasis in diabetes mellitus more broadly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative contribution of THTR-1 and THTR-2 in thiamin uptake by pancreatic acinar cells: studies utilizing Slc19a2 and Slc19a3 knockout mouse models.

Thiamin is essential for normal function of pancreatic acinar cells, and its deficiency leads to a reduction in pancreatic digestive enzymes. We have recently shown that thiamin uptake by rat pancreatic acinar cells is carrier-mediated and that both thiamin transporter (THTR)-1 and THTR-2 are expressed in these cells; little, however, is known about the relative contribution of these transporte...

متن کامل

Effect of the Cigarette Smoke Component, 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone (NNK), on Physiological and Molecular Parameters of Thiamin Uptake by Pancreatic Acinar Cells

Thiamin is indispensable for the normal function of pancreatic acinar cells. These cells take up thiamin via specific carrier-mediated process that involves thiamin transporter-1 and -2 (THTR-1 and THTR-2; products of SLC19A2 and SLC19A3 genes, respectively). In this study we examined the effect of chronic exposure of pancreatic acinar cells in vitro (pancreatic acinar 266-6 cells) and in vivo ...

متن کامل

Differentiation-dependent up-regulation of intestinal thiamin uptake: cellular and molecular mechanisms.

Differentiation of intestinal epithelial cells is associated with up-and-down regulation of expression of a variety of genes including those involved in nutrient uptake. Nothing is known about possible differentiation-dependent regulation of the intestinal thiamin uptake process and the cellular and molecular mechanisms involved in such regulation. Using as models human-derived intestinal epith...

متن کامل

Mechanisms involved in the inhibitory effect of chronic alcohol exposure on pancreatic acinar thiamin uptake.

Pancreatic acinar cells (PAC) obtain thiamin from the circulation via a carrier-mediated process that involves thiamin transporters 1 and 2 (THTR-1 and THTR-2; products of SLC19A2 and SLC19A3, respectively). Chronic alcohol exposure of PAC inhibits thiamin uptake, and, on the basis of in vitro studies, this inhibition appears to be transcriptionally mediated. The aim of this study was to confir...

متن کامل

Chronic Nicotine Exposure In Vivo and In Vitro Inhibits Vitamin B1 (Thiamin) Uptake by Pancreatic Acinar Cells

Thiamin (vitamin B1), a member of the water-soluble family of vitamins, is essential for normal cellular functions; its deficiency results in oxidative stress and mitochondrial dysfunction. Pancreatic acinar cells (PAC) obtain thiamin from the circulation using a specific carrier-mediated process mediated by both thiamin transporters -1 and -2 (THTR-1 and THTR-2; encoded by the SLC19A2 and SLC1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 11 23  شماره 

صفحات  -

تاریخ انتشار 2002