An information theoretic approach to joint probabilistic face detection and tracking
نویسندگان
چکیده
A joint probabilistic face detection and tracking algorithm for combining a likelihood estimation and a prior probability is proposed in this paper. Face tracking is achieved by a Bayesian framework. The likelihood estimation scheme is based on statistical training of sets of automatically generated feature points, while the prior probability estimation is based on the fusion of an information theoretic tracking cue and a gaussian temporal model. The likelihood estimation process is the core of a multiple face detection scheme used to initialize the tracking process. The resulting system was tested on real image sequences and is robust to significant partial occlusion and illumination changes
منابع مشابه
Covariance Analysis of a vector tracking GPS receiver based on MMSE multiuser Detection
In high dynamic conditions, using vector tracking loops instead of scalar tracking loops in GPS receivers is proved as an efficient method to compensate the performance. The Minimum Mean Squared Error detector as a multiuser detector is applied in the vector tracking loop for more reliability and efficiency. The Kalman filter does the two tasks of tracking and extracting the navigation data aft...
متن کاملOnline multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملMultiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model
Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...
متن کاملTracking Animals in Wildlife Videos Using Face Detection
This paper presents an algorithm for detection and tracking of animal faces in wildlife videos. As an example the algorithm is applied to lion faces. The detection algorithm is based on a human face detection method, utilising Haar-like features and AdaBoost classifiers. The face tracking is implemented using the Kanade-Lucas-Tomasi tracker and by applying a specific interest model to the detec...
متن کاملRobust and Real Time Face Tracking Using Particle Filter Based on Probablistic Face Model
This paper presents an algorithm for real time and robust human face tracking against pictures and other objects. It is based on Haar-like features, skin segmentation and motion information for face detection. Face tracking is performed using particle filter which depends on skin color and probabilistic face model. Basically, the employed features for face detection are Haar-like. We employ PCA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002