Kähler-ricci Solitons on Toric Manifolds with Positive First Chern Class

نویسندگان

  • Xu-Jia Wang
  • Xiaohua Zhu
چکیده

In this paper we prove there exists a Kähler-Ricci soliton, unique up to holomorphic automorphisms, on any toric Kähler manifold with positive first Chern class, and the Kähler-Ricci soliton is a Kähler-Einstein metric if and only if the Futaki invariant vanishes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kähler-ricci Flow on a Toric Manifold with Positive First Chern Class

In this note, we prove that on an n-dimensional compact toric manifold with positive first Chern class, the Kähler-Ricci flow with any initial (S)-invariant Kähler metric converges to a Kähler-Ricci soliton. In particular, we give another proof for the existence of Kähler-Ricci solitons on a compact toric manifold with positive first Chern class by using the Kähler-Ricci flow. 0. Introduction. ...

متن کامل

Transverse Kähler Geometry of Sasaki Manifolds and Toric Sasaki-einstein Manifolds

In this paper we study compact Sasaki manifolds in view of transverse Kähler geometry and extend some results in Kähler geometry to Sasaki manifolds. In particular we define integral invariants which obstruct the existence of transverse Kähler metric with harmonic Chern forms. The integral invariant f1 for the first Chern class case becomes an obstruction to the existence of transverse Kähler m...

متن کامل

The Kähler-ricci Flowon Kähler Surfaces

The problem of finding Kähler-Einstein metrics on a compact Kähler manifold has been the subject of intense study over the last few decades. In his solution to Calabi’s conjecture, Yau [Ya1] proved the existence of a Kähler-Einstein metric on compact Kähler manifolds with vanishing or negative first Chern class. An alternative proof of Yau’s theorem is given by Cao [Ca] using the Kähler-Ricci f...

متن کامل

A new holomorphic invariant and uniqueness of Kähler–Ricci solitons

In this paper, a new holomorphic invariant is defined on a compact Kähler manifold with positive first Chern class and nontrivial holomorphic vector fields. This invariant generalizes the Futaki invariant. We prove that this invariant is an obstruction to the existence of Kähler– Ricci solitons. In particular, using this invariant together with the main result in [TZ1], we solve completely the ...

متن کامل

On dimension reduction in the Kähler-Ricci flow

We consider dimension reduction for solutions of the Kähler-Ricci flow with nonegative bisectional curvature. When the complex dimension n = 2, we prove an optimal dimension reduction theorem for complete translating KählerRicci solitons with nonnegative bisectional curvature. We also prove a general dimension reduction theorem for complete ancient solutions of the Kähler-Ricci flow with nonneg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004