Homotopy of State Orbits

نویسندگان

  • Esteban Andruchow
  • Alejandro Varela
چکیده

Let M be a von Neumann algebra, φ a faithful normal state and denote by M the fixed point algebra of the modular group of φ. Let UM and UMφ be the unitary groups of M and M. In this paper we study the quotient Uφ = UM/UMφ endowed with two natural topologies: the one induced by the usual norm of M (called here usual topology of Uφ), and the one induced by the pre-Hilbert C∗-module norm given by the φ-invariant conditional expectation Eφ : M → M (called the modular topology). It is shown that Uφ is simply connected with the usual topology. Both topologies are compared, and it is shown that they coincide if and only if the Jones index of Eφ is finite. The set Uφ can be regarded as a model for the unitary orbit {φ ◦Ad(u ∗) : u ∈ UM} of φ, and either with the usual or the modular it can be embedded continuously in the conjugate space M∗ (although not as a topological submanifold).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Solution of Steady State Substrate Concentration of an Immobilized Enzyme Kinetics by Laplace Transform Homotopy Perturbation Method

The nonlinear dynamical system modeling the immobilized enzyme kinetics with Michaelis-Menten mechanism for an irreversible reaction without external mass transfer resistance is considered. Laplace transform homotopy perturbation method is used to obtain the approximate solution of the governing nonlinear differential equation, which consists in determining the series solution convergent to the...

متن کامل

Homotopy Shadowing

Michael Shub proved in 1969 that the topological conjugacy class of an expanding endomorphism on a compact manifold is determined by its homotopy type. In this article we generalize this result in two directions. In one direction we consider certain expanding maps on metric spaces. In a second direction we consider maps which are hyperbolic with respect to product cone fields on a product manif...

متن کامل

Noncontractible periodic orbits in cotangent bundles and Floer homology

For every nontrivial free homotopy class α of loops in any closed connected Riemannian manifold, we prove existence of a noncontractible 1periodic orbit for every compactly supported time-dependent Hamiltonian on the open unit cotangent bundle whenever it is sufficiently large over the zero section. The proof shows that the Biran-Polterovich-Salamon capacity is finite for every closed connected...

متن کامل

The Hopf-van der Pol System: Failure of a Homotopy Method

The purpose of this article to provide an explicit example where continuation based on the homotopy method fails. The example is a one-parameter homotopy for periodic orbits between two well-known nonlinear systems, the normal form of the Hopf bifurcation and the van der Pol system. Our analysis shows that various types of obstructions can make approximation over the whole range of the homotopy...

متن کامل

Homotopy Theory of Lie groups and their Classifying Spaces

1. Lie groups, homomorphisms and linear representations. Irreducible representations. 2. Maximal tori in compact Lie groups. 3. Characters of representations. Ring of virtual characters. The Weyl theorem. 4. Actions of Lie groups. Homogeneous spaces (orbits) and equivariant maps. 5. Classifying spaces of topological groups and maps induced by homomorphisms. 6. Homotopy classification of maps be...

متن کامل

Fuzzy Sliding Mode for Spacecraft Formation Control in Eccentric Orbits

The problem of relative motion control for spacecraft formation flying in eccentric orbits is considered in this paper. Due to the presence of nonlinear dynamics and external disturbances, a robust fuzzy sliding mode controller is developed. The slopes of sliding surfaces of the conventional sliding mode controller are tuned according to error states using a fuzzy logic and reach the pre-define...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999