Forelimb muscle architecture and myosin isoform composition in the groundhog (Marmota monax).
نویسندگان
چکیده
Scratch-digging mammals are commonly described as having large, powerful forelimb muscles for applying high force to excavate earth, yet studies quantifying the architectural properties of the musculature are largely unavailable. To further test hypotheses about traits that represent specializations for scratch-digging, we quantified muscle architectural properties and myosin expression in the forelimb of the groundhog (Marmota monax), a digger that constructs semi-complex burrows. Architectural properties measured were muscle moment arm, muscle mass (MM), belly length (ML), fascicle length (l(F)), pennation angle and physiological cross-sectional area (PCSA), and these metrics were used to estimate maximum isometric force, joint torque and power. Myosin heavy chain (MHC) isoform composition was determined in selected forelimb muscles by SDS-PAGE and densitometry analysis. Groundhogs have large limb retractors and elbow extensors that are capable of applying moderately high torque at the shoulder and elbow joints, respectively. Most of these muscles (e.g. latissimus dorsi and pectoralis superficialis) have high l(F)/ML ratios, indicating substantial shortening ability and moderate power. The unipennate triceps brachii long head has the largest PCSA and is capable of the highest joint torque at both the shoulder and elbow joints. The carpal and digital flexors show greater pennation and shorter fascicle lengths than the limb retractors and elbow extensors, resulting in higher PCSA/MM ratios and force production capacity. Moreover, the digital flexors have the capacity for both appreciable fascicle shortening and force production, indicating high muscle work potential. Overall, the forelimb musculature of the groundhog is capable of relatively low sustained force and power, and these properties are consistent with the findings of a predominant expression of the MHC-2A isoform. Aside from the apparent modifications to the digital flexors, the collective muscle properties observed are consistent with its behavioral classification as a less-specialized burrower and these may be more representative of traits common to numerous rodents with burrowing habits or mammals with some fossorial ability.
منابع مشابه
Anatomical, architectural, and biochemical diversity of the murine forelimb muscles.
We characterized the architecture, fiber type, titin isoform distribution, and collagen content of 27 portions of 22 muscles in the murine forelimb. The mouse forelimb was different from the human arm in that it had the extensor digitorum lateralis muscle and no brachioradialis muscle. Architecturally, the mouse forelimb differed from humans with regard to load bearing, having a much larger con...
متن کاملTranscriptome Analysis and Comparison of Marmota monax and Marmota himalayana
The Eastern woodchuck (Marmota monax) is a classical animal model for studying hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC) in humans. Recently, we found that Marmota himalayana, an Asian animal species closely related to Marmota monax, is susceptible to woodchuck hepatitis virus (WHV) infection and can be used as a new mammalian model for HBV infection. However, the lac...
متن کاملAudiograms of five species of rodents: implications for the evolution of hearing and the perception of pitch.
Behavioral audiograms were determined for five species of rodents: groundhog (Marmota monax), chipmunk (Tamias striatus), Darwin's leaf-eared mouse (Phyllotis darwinii), golden hamster (Mesocricetus auratus), and Egyptian spiny mouse (Acomys cahirinus). The high-frequency hearing of these animals was found to vary inversely with interaural distance, a typical mammalian pattern. With regard to l...
متن کاملContractile Properties of Muscle Fibers from the Forelimb Deep and Superficial Digital Flexors of Horses
Equine digital flexor muscles have independent tendons but nearly identical mechanical relationship to the main joint they act upon. Yet these muscles have remarkable diversity in architecture, ranging from long, unipennate fibers (‘short’ compartment of DDF) to very short, multipennate fibers (SDF). To investigate the functional relevance of the form of the digital flexor muscles, fiber contra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 218 Pt 2 شماره
صفحات -
تاریخ انتشار 2015