Multitask learning for host–pathogen protein interactions
نویسندگان
چکیده
MOTIVATION An important aspect of infectious disease research involves understanding the differences and commonalities in the infection mechanisms underlying various diseases. Systems biology-based approaches study infectious diseases by analyzing the interactions between the host species and the pathogen organisms. This work aims to combine the knowledge from experimental studies of host-pathogen interactions in several diseases to build stronger predictive models. Our approach is based on a formalism from machine learning called 'multitask learning', which considers the problem of building models across tasks that are related to each other. A 'task' in our scenario is the set of host-pathogen protein interactions involved in one disease. To integrate interactions from several tasks (i.e. diseases), our method exploits the similarity in the infection process across the diseases. In particular, we use the biological hypothesis that similar pathogens target the same critical biological processes in the host, in defining a common structure across the tasks. RESULTS Our current work on host-pathogen protein interaction prediction focuses on human as the host, and four bacterial species as pathogens. The multitask learning technique we develop uses a task-based regularization approach. We find that the resulting optimization problem is a difference of convex (DC) functions. To optimize, we implement a Convex-Concave procedure-based algorithm. We compare our integrative approach to baseline methods that build models on a single host-pathogen protein interaction dataset. Our results show that our approach outperforms the baselines on the training data. We further analyze the protein interaction predictions generated by the models, and find some interesting insights. AVAILABILITY The predictions and code are available at: http://www.cs.cmu.edu/∼mkshirsa/ismb2013_paper320.html . SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
Multitask learning for hostâ•fipathogen protein interactions
Motivation: An important aspect of infectious disease research involves understanding the differences and commonalities in the infection mechanisms underlying various diseases. Systems biology-based approaches study infectious diseases by analyzing the interactions between the host species and the pathogen organisms. This work aims to combine the knowledge from experimental studies of host– pat...
متن کاملComputational approaches for prediction of pathogen-host protein-protein interactions
Infectious diseases are still among the major and prevalent health problems, mostly because of the drug resistance of novel variants of pathogens. Molecular interactions between pathogens and their hosts are the key parts of the infection mechanisms. Novel antimicrobial therapeutics to fight drug resistance is only possible in case of a thorough understanding of pathogen-host interaction (PHI) ...
متن کاملMultitask Matrix Completion for Learning Protein Interactions Across Diseases
Disease-causing pathogens such as viruses introduce their proteins into the host cells in which they interact with the host's proteins, enabling the virus to replicate inside the host. These interactions between pathogen and host proteins are key to understanding infectious diseases. Often multiple diseases involve phylogenetically related or biologically similar pathogens. Here we present a mu...
متن کاملCombine and conquer: methods for multitask learning in biology and language
Generalizing beyond an individual task and borrowing knowledge from related tasks are the hallmarks of true intelligence. Knowing one language makes it easier to learn other languages, similar sports require learning similar skills to master them, etc. While building supervised machine learning models, such opportunities arise in machine translation for similar languages, modeling molecular pro...
متن کاملRabies Infection: An Overview of Lyssavirus-Host Protein Interactions
Viruses are obligatory intracellular parasites that use cell proteins to take the control of the cell functions in order to accomplish their life cycle. Studying the viral-host interactions would increase our knowledge of the viral biology and mechanisms of pathogenesis. Studies on pathogenesis mechanisms of lyssaviruses, which are the causative agents of rabies, have revealed some important ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 29 شماره
صفحات -
تاریخ انتشار 2013