Disparity Estimation Based on Bayesian Maximum A Posteriori (MAP) Algorithm∗
نویسندگان
چکیده
In this paper, a general formula of disparity estimation based on Bayesian Maximum A Posteriori (MAP) algorithm is derived and implemented with simplified probabilistic models. The formula is the generalized probabilistic diffusion equation based on Bayesian model, and can be implemented into some different forms corresponding to the probabilistic models in the disparity neighborhood system or configuration. The probabilistic models are independence and similarity among the neighboring disparities in the configuration. The independence probabilistic model guarantees the discontinuity at the object boundary region, and the similarity model does the continuity or the high correlation of the disparity distribution. According to the experimental results, the proposed algorithm had good estimation performance. This result showes that the derived formula generalizes the probabilistic diffusion based on Bayesian MAP algorithm for disparity estimation. Also, the proposed probabilistic models are reasonable and approximate the pure joint probability distribution very well with decreasing the computations to O(n(D)) from O(n(D)) of the generalized formula. key words: disparity estimation, Bayesian maximum a posteriori (MAP) algorithm, Markov random field, plane configuration model, probabilistic diffusion
منابع مشابه
Algorithms for Joint Phase Estimation and Decoding for MIMO Systems in the Presence of Phase Noise
In this work, we derive the maximum a posteriori (MAP) symbol detector for a multiple-input multiple-output system in the presence of Wiener phase noise due to noisy local oscillators. As in single-antenna systems, the computation of the optimal receiver is an infinite dimensional problem and is thus unimplementable in practice. In this purview, we propose three suboptimal, low-complexity algor...
متن کاملBlock-Wise MAP Disparity Estimation for Intermediate View Reconstruction
A dense disparity map is required in the application of intermediate view reconstruction from stereoscopic images. A popular approach to obtaining a dense disparity map is maximum a-posteriori (MAP) disparity estimation. The MAP approach requires statistical models for modeling both a likelihood term and an a-priori term. Normally, a Gaussian model is used. In this contribution, block-wise MAP ...
متن کاملImproved Bayesian Training for Context-Dependent Modeling in Continuous Persian Speech Recognition
Context-dependent modeling is a widely used technique for better phone modeling in continuous speech recognition. While different types of context-dependent models have been used, triphones have been known as the most effective ones. In this paper, a Maximum a Posteriori (MAP) estimation approach has been used to estimate the parameters of the untied triphone model set used in data-driven clust...
متن کاملImplementation of Bayesian Techniques for Demodulation
Demodulation of received signals for a known channel parameters over Rayleigh fading channel is done by BEM (Bayesian Estimation Maximization) algorithm using MAP (Maximum A Posteriori) Probability decisions. Simulation results were produced using this demodulator for the specified mobile satellite based trans-receiver system to find the BER (Bit Error Rate). Comparisons are made to that of a Q...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999