Joint Structural Estimation of Multiple Graphical Models
نویسندگان
چکیده
Gaussian graphical models capture dependence relationships between random variables through the pattern of nonzero elements in the corresponding inverse covariance matrices. To date, there has been a large body of literature on both computational methods and analytical results on the estimation of a single graphical model. However, in many application domains, one has to estimate several related graphical models, a problem that has also received attention in the literature. The available approaches usually assume that all graphical models are globally related. On the other hand, in many settings different relationships between subsets of the node sets exist between different graphical models. We develop methodology that jointly estimates multiple Gaussian graphical models, assuming that there exists prior information on how they are structurally related. For many applications, such information is available from external data sources. The proposed method consists of first applying neighborhood selection with a group lasso penalty to obtain edge sets of the graphs, and a maximum likelihood refit for estimating the nonzero entries in the inverse covariance matrices. We establish consistency of the proposed method for sparse high-dimensional Gaussian graphical models and examine its performance using simulation experiments. Applications to a climate data set and a breast cancer data set are also discussed.
منابع مشابه
Copula Graphical Models for Wind Resource Estimation
We develop multivariate copulas for modeling multiple joint distributions of wind speeds at a wind farm site and neighboring wind source. A ndimensional Gaussian copula and multiple copula graphical models enhance the quality of the prediction site distribution. The models, in comparison to multiple regression, achieve higher accuracy and lower cost because they require less sensing data.
متن کاملA Fast and Scalable Joint Estimator for Learning Multiple Related Sparse Gaussian Graphical Models
Estimating multiple sparse Gaussian Graphical Models (sGGMs) jointly for many related tasks (large K) under a high-dimensional (large p) situation is an important task. Most previous studies for the joint estimation of multiple sGGMs rely on penalized log-likelihood estimators that involve expensive and difficult non-smooth optimizations. We propose a novel approach, FASJEM for fast and scalabl...
متن کاملJoint Estimation of Multiple Graphical Models from High Dimensional Time Series.
In this manuscript we consider the problem of jointly estimating multiple graphical models in high dimensions. We assume that the data are collected from n subjects, each of which consists of T possibly dependent observations. The graphical models of subjects vary, but are assumed to change smoothly corresponding to a measure of closeness between subjects. We propose a kernel based method for j...
متن کاملSimultaneously Leveraging Output and Task Structures for Multiple-Output Regression
Multiple-output regression models require estimating multiple parameters, one for each output. Structural regularization is usually employed to improve parameter estimation in such models. In this paper, we present a multiple-output regression model that leverages the covariance structure of the latent model parameters as well as the conditional covariance structure of the observed outputs. Thi...
متن کاملJoint estimation of multiple dependent Gaussian graphical models with applications to mouse genomics
Gaussian graphical models are widely used to represent conditional dependence among random variables. In this paper, we propose a novel estimator for data arising from a group of Gaussian graphical models that are themselves dependent. A motivating example is that of modeling gene expression collected on multiple tissues from the same individual: here the multivariate outcome is affected by dep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 17 شماره
صفحات -
تاریخ انتشار 2016