Customizing Sentiment Classifiers to New Domains: a Case Study

نویسندگان

  • Anthony Aue
  • Michael Gamon
چکیده

Sentiment classification is a very domainspecific problem; classifiers trained in one domain do not perform well in others. Unfortunately, many domains are lacking in large amounts of labeled data for fully-supervised learning approaches. At the same time, sentiment classifiers need to be customizable to new domains in order to be useful in practice. We attempt to address these difficulties and constraints in this paper, where we survey four different approaches to customizing a sentiment classification system to a new target domain in the absence of large amounts of labeled data. We base our experiments on data from four different domains. After establishing that näıve cross-domain classification results in poor classification accuracy, we compare results obtained by using each of the four approaches and discuss their advantages, disadvantages and performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Methods for Multi-Domain Learning and Adaptation

NLP tasks are often domain specific, yet systems can learn behaviors across multiple domains. We develop a new multi-domain online learning framework based on parameter combination from multiple classifiers. Our algorithms draw from multi-task learning and domain adaptation to adapt multiple source domain classifiers to a new target domain, learn across multiple similar domains, and learn acros...

متن کامل

Leveraging Multiple Domains for Sentiment Classification

Sentiment classification becomes more and more important with the rapid growth of usergenerated content. However, sentiment classification task usually comes with two challenges: first, sentiment classification is highly domain-dependent and training sentiment classifier for every domain is inefficient and often impractical; second, since the quantity of labeled data is important for assessing ...

متن کامل

When Specialists and Generalists Work Together: Overcoming Domain Dependence in Sentiment Tagging

This study presents a novel approach to the problem of system portability across different domains: a sentiment annotation system that integrates a corpus-based classifier trained on a small set of annotated in-domain data and a lexicon-based system trained on WordNet. The paper explores the challenges of system portability across domains and text genres (movie reviews, news, blogs, and product...

متن کامل

A Supervised Method for Constructing Sentiment Lexicon in Persian Language

Due to the increasing growth of digital content on the internet and social media, sentiment analysis problem is one of the emerging fields. This problem deals with information extraction and knowledge discovery from textual data using natural language processing has attracted the attention of many researchers. Construction of sentiment lexicon as a valuable language resource is a one of the imp...

متن کامل

Kea: Sentiment Analysis of Phrases Within Short Texts

Sentiment Analysis has become an increasingly important research topic. This paper describes our approach to building a system for the Sentiment Analysis in Twitter task of the SemEval-2014 evaluation. The goal is to classify a phrase within a short piece of text as positive, negative or neutral. In the evaluation, classifiers trained on Twitter data are tested on data from other domains such a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005