Mixed context networks for semantic segmentation
نویسندگان
چکیده
Semantic segmentation is challenging as it requires both object-level information and pixel-level accuracy. Recently, FCN-based systems gained great improvement in this area. Unlike classification networks, combining features of different layers plays an important role in these dense prediction models, as these features contains information of different levels. A number of models have been proposed to show how to use these features. However, what is the best architecture to make use of features of different layers is still a question. In this paper, we propose a module, called mixed context network, and show that our presented system outperforms most existing semantic segmentation systems by making use of this module.
منابع مشابه
A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملChinese/English mixed Character Segmentation as Semantic Segmentation
OCR character segmentation for multilingual printed documents is difficult due to the diversity of different linguistic characters. Previous approaches mainly focus on monolingual texts and are not suitable for multilinguallingual cases. In this work, we particularly tackle the Chinese/English mixed case by reframing it as a semantic segmentation problem. We take advantage of the successful arc...
متن کاملDeep Context Convolutional Neural Networks for Semantic Segmentation
Recent years have witnessed the great progress for semantic segmentation using deep convolutional neural networks (DCNNs). This paper presents a novel fully convolutional network for semantic segmentation using multi-scale contextual convolutional features. Since objects in natural images tend to be with various scales and aspect ratios, capturing the rich contextual information is very critica...
متن کاملContext-based Global Multi-class Semantic Segmentation of Images Inspired by the Human Visual System
Semantic scene understanding is one of the several significant goals of robotics. In this paper, we propose a framework that is able to simultaneously detect and segment objects of different classes using a simple pairwise interactive context term, for the sake of achieving a preliminary milestone of Semantic scene understanding. The context is incorporated as pairwise interactions between pixe...
متن کاملProgressively Diffused Networks for Semantic Image Segmentation
This paper introduces Progressively Diffused Networks (PDNs) for unifying multi-scale context modeling with deep feature learning, by taking semantic image segmentation as an exemplar application. Prior neural networks such as ResNet [11] tend to enhance representational power by increasing the depth of architectures and driving the training objective across layers. However, we argue that spati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1610.05854 شماره
صفحات -
تاریخ انتشار 2016