Transducing touch in Caenorhabditis elegans.
نویسندگان
چکیده
Mechanosensation has been studied for decades, but understanding of its molecular mechanism is only now emerging from studies in Caenorhabditis elegans and Drosophila melanogaster. In both cases, the entry point proved to be genetic screens that allowed molecules needed for mechanosensation to be identified without any prior understanding of the likely components. In C. elegans, genetic screens revealed molecules needed for touch sensation along the body wall and other regions of force sensitivity. Members of two extensive membrane protein families have emerged as candidate sensory mechanotransduction channels: mec-4 and mec-10, which encode amiloride-sensitive channels (ASCs or DEG/ENaCs), and osm-9, which encodes a TRP ion channel. There are roughly 50 other members of these families whose functions in C. elegans are unknown. This article classifies these channels in C. elegans, with an emphasis on insights into their function derived from mutation. We also review the neuronal cell types in which these channels might be expressed and mediate mechanotransduction.
منابع مشابه
استفاده از تعامل نماتد Caenorhabditis elegans، قارچ Arthrobotrys oligospora و باکتری Bacillus subtilis در کنترل نماتد Meloidogyne javanica
در این تحقیق از تعامل نماتد Caenorhabditis elegans، قارچ Arthrobotrys oligospora و باکتری Bacillus subtilis در کنترل نماتد مولد گره ریشه Meloidogyne javanica استفاده شد. باکتری مذکور جهت تحریک سیستم دفاعی گیاه در بدو تیمار و به عنوان غذای نماتد C. elegans و نماتد C. elegans به منظور افزایش تولید تله استفاده شد. قارچoligospora A. پس از 72 ساعتموجب مرگ و میر 77% لاروهای نماتد M. javanica گردید، ...
متن کاملIdentification of Nonviable Genes Affecting Touch Sensitivity in Caenorhabditis elegans Using Neuronally Enhanced Feeding RNA Interference
Caenorhabditis elegans senses gentle touch along the body via six touch receptor neurons. Although genetic screens and microarray analyses have identified several genes needed for touch sensitivity, these methods miss pleiotropic genes that are essential for the viability, movement, or fertility of the animals. We used neuronally enhanced feeding RNA interference to screen genes that cause leth...
متن کاملDetermination of the effects of food preservatives benzoic acid and sodium nitrate on lifespan, fertility and physical growth in Caenorhabditis elegans
Presently, the use of protective food additives such as benzoic acid and sodium nitrate is quite common. However, it was found that these additives, which initially appeared to be harmless, led to the emergence of a number of health problems. Cancer and diseases and deaths with no apparent causes are among the leading concerns. Therefore, the studies which can reveal the genotoxic potential of ...
متن کاملThe neural circuits and sensory channels mediating harsh touch sensation in Caenorhabditis elegans.
Most animals can distinguish two distinct types of touch stimuli: gentle (innocuous) and harsh (noxious/painful) touch, however, the underlying mechanisms are not well understood. Caenorhabditis elegans is a useful model for the study of gentle touch sensation. However, little is known about harsh touch sensation in this organism. Here we characterize harsh touch sensation in C. elegans. We sho...
متن کاملComparing Caenorhabditis elegans gentle and harsh touch response behavior using a multiplexed hydraulic microfluidic device.
The roundworm Caenorhabditis elegans is an important model system for understanding the genetics and physiology of touch. Classical assays for C. elegans touch, which involve manually touching the animal with a probe and observing its response, are limited by their low throughput and qualitative nature. We developed a microfluidic device in which several dozen animals are subject to spatially l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annual review of physiology
دوره 65 شماره
صفحات -
تاریخ انتشار 2003