Bayesian Wavelet-Domain Image Modeling Using Hidden Markov Trees
نویسندگان
چکیده
Wavelet-domain hidden Markov models have proven to be useful tools. for statistical signal and image processing. The hidden Markov tree ( H M T ) model captures the key features of the joint statistics of the wavelet coeficients of real-world data. One potential drawback to the H M T framework is the need for computationally expensive iterative training (using the E M algorithm, fo r example). I n this paper, we propose two reduced-parameter H M T models that capture the general structure of a broad class of grayscale images. The image HMT (iHMT) model leverages the fact that f o r a large class of images the structure of the H M T is self-similar across scale. This allows us to reduce the complexity of the i H M T to just nine easily trained parameters (independent of the size of the image and the number of wavelet scales). I n the universal HMT (uHMT) we take a Bayesian approach and f ix these nine parameters. The uHMT requires no training of any kind. While simple, we show using a series of image estimation/denoising experiments that these two new models retain nearly all of the key structures modeled by the full HMT. Based on these new models, we develop a shift-invariant wavelet denoising scheme that outperforms all algorithms in the current literature.
منابع مشابه
A study of contextual modeling and texture characterization for multiscale Bayesian segmentation
In this paper, we demonstrate that multiscale Bayesian image segmentation can be enhanced by improving both contextual modeling and statistical texture characterization. Firstly, we show a joint multi-context and multiscale approach to achieve more robust contextual modeling by using multiple context models. Secondly, we study statistical texture characterization using wavelet-domain Hidden Mar...
متن کاملUnsupervised Bayesian image segmentation using wavelet-domain hidden Markov models
In this paper, we study unsupervised image segmentation using wavelet-domain hidden Markov models (HMMs). We first review recent supervised Bayesian image segmentation algorithms using wavelet-domain HMMs. Then, a new unsupervised segmentation approach is developed by capturing the likelihood disparity of different texture features with respect to wavelet-domain HMMs. The K-mean clustering is u...
متن کاملBayesian tree-structured image modeling using wavelet-domain hidden Markov models
Wavelet-domain hidden Markov models have proven to be useful tools for statistical signal and image processing. The hidden Markov tree (HMT) model captures the key features of the joint probability density of the wavelet coefficients of real-world data. One potential drawback to the HMT framework is the need for computationally expensive iterative training to fit an HMT model to a given data se...
متن کاملAutomated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images
ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...
متن کاملImage deconvolution using hidden Markov tree modeling of complex wavelet packets
In this paper, we propose to use a hidden Markov tree modeling of the complex wavelet packet transform, to capture the inter-scale dependencies of natural images. First, the observed image, blurred and noisy, is deconvolved without regularization. Then its transform is denoised within a Bayesian framework using the proposed model, whose parameters are estimated by an EM technique. The total com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999