Improving ASR error detection with non-decoder based features
نویسندگان
چکیده
This study reports error detection experiments in large vocabulary automatic speech recognition (ASR) systems, by using statistical classifiers. We explored new features gathered from other knowledge sources than the decoder itself: a binary feature that compares outputs from two different ASR systems (word by word), a feature based on the number of hits of the hypothesized bigrams, obtained by queries entered into a very popular Web search engine, and finally a feature related to automatically infered topics at sentence and word levels. Experiments were conducted on a European Portuguese broadcast news corpus. The combination of baseline decoder-based features and two of these additional features led to significant improvements, from 13.87% to 12.16% classification error rate (CER) with a maximum entropy model, and from 14.01% to 12.39% CER with linear-chain conditional random fields, comparing to a baseline using only decoder-based features.
منابع مشابه
ASR Error Management for Improving Spoken Language Understanding
This paper addresses the problem of automatic speech recognition (ASR) error detection and their use for improving spoken language understanding (SLU) systems. In this study, the SLU task consists in automatically extracting, from ASR transcriptions, semantic concepts and concept/values pairs in a e.g touristic information system. An approach is proposed for enriching the set of semantic labels...
متن کاملTowards Phonetically-Driven Hidden Markov Models: Can We Incorporate Phonetic Landmarks in HMM-Based ASR?
Automatic speech recognition mainly relies on hidden Markov models (HMM) which make little use of phonetic knowledge. As an alternative, landmark based recognizers rely mainly on precise phonetic knowledge and exploit distinctive features. We propose a theoretical framework to combine both approaches by introducing phonetic knowledge in a non stationary HMM decoder. To demonstrate the potential...
متن کاملError Detection in Broadcast News ASR Using Markov Chains
This article addresses error detection in broadcast news automatic transcription, as a post-processing stage. Based on the observation that many errors appear in bursts, we investigated the use of Markov Chains (MC) for their temporal modelling capabilities. Experiments were conducted on a large Amercian English broadcast news corpus from NIST. Common features in error detection were used, all ...
متن کاملModel-based independent component analysis for robust multi-microphone automatic speech recognition
In this communication, we present a method for noise-robust multimicrophone automatic speech recognition (ASR). It is assumed that the speech source to be recognized is recorded with several microphones in a noisy acoustic environment. The proposed method estimates the short-term subband energies (as they are needed for computing the ASR front-end) of the clean speech source from the ones of th...
متن کاملAutomatic speech recognition over error-prone wireless networks
The past decade has witnessed a growing interest in deploying automatic speech recognition (ASR) in communication networks. The networks such as wireless networks present a number of challenges due to e.g. bandwidth constraints and transmission errors. The introduction of distributed speech recognition (DSR) largely eliminates the bandwidth limitations and the presence of transmission errors be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010