Spin-Dependent Transport through Chiral Molecules Studied by Spin-Dependent Electrochemistry
نویسندگان
چکیده
Molecular spintronics (spin + electronics), which aims to exploit both the spin degree of freedom and the electron charge in molecular devices, has recently received massive attention. Our recent experiments on molecular spintronics employ chiral molecules which have the unexpected property of acting as spin filters, by way of an effect we call "chiral-induced spin selectivity" (CISS). In this Account, we discuss new types of spin-dependent electrochemistry measurements and their use to probe the spin-dependent charge transport properties of nonmagnetic chiral conductive polymers and biomolecules, such as oligopeptides, L/D cysteine, cytochrome c, bacteriorhodopsin (bR), and oligopeptide-CdSe nanoparticles (NPs) hybrid structures. Spin-dependent electrochemical measurements were carried out by employing ferromagnetic electrodes modified with chiral molecules used as the working electrode. Redox probes were used either in solution or when directly attached to the ferromagnetic electrodes. During the electrochemical measurements, the ferromagnetic electrode was magnetized either with its magnetic moment pointing "UP" or "DOWN" using a permanent magnet (H = 0.5 T), placed underneath the chemically modified ferromagnetic electrodes. The spin polarization of the current was found to be in the range of 5-30%, even in the case of small chiral molecules. Chiral films of the l- and d-cysteine tethered with a redox-active dye, toludin blue O, show spin polarizarion that depends on the chirality. Because the nickel electrodes are susceptible to corrosion, we explored the effect of coating them with a thin gold overlayer. The effect of the gold layer on the spin polarization of the electrons ejected from the electrode was investigated. In addition, the role of the structure of the protein on the spin selective transport was also studied as a function of bias voltage and the effect of protein denaturation was revealed. In addition to "dark" measurements, we also describe photoelectrochemical measurements in which light is used to affect the spin selective electron transport through the chiral molecules. We describe how the excitation of a chromophore (such as CdSe nanoparticles), which is attached to a chiral working electrode, can flip the preferred spin orientation of the photocurrent, when measured under the identical conditions. Thus, chirality-induced spin polarization, when combined with light and magnetic field effects, opens new avenues for the study of the spin transport properties of chiral molecules and biomolecules and for creating new types of spintronic devices in which light and molecular chirality provide new functions and properties.
منابع مشابه
ترابرد الکتریکی وابسته به اسپین در ساختارهای نامتجانس Fe-MgO-Fe
In this paper, spin-dependent electrical transport properties are investigated in a single-crystal magnetic tunnel junction (MTJ) which consists of two ferromagnetic Fe electrodes separated by an MgO insulating barrier. These properties contain electric current, spin polarization and tunnel magnetoresistance (TMR). For this purpose, spin-dependent Hamiltonian is described for Δ1 and Δ5 bands in...
متن کاملChiral electron transport: scattering through helical potentials.
We present a model for the transmission of spin-polarized electrons through oriented chiral molecules, where the chiral structure is represented by a helix. The scattering potential contains a confining term and a spin-orbit contribution that is responsible for the spin-dependent scattering of electrons by the molecular target. The differential scattering cross section is calculated for right- ...
متن کاملHelix-Dependent Spin Filtering through the DNA Duplex.
Recent work suggests that electrons can travel through DNA and other chiral molecules in a spin-selective manner, but little is known about the origin of this spin selectivity. Here we describe experiments on magnetized DNA-modified electrodes to explore spin-selective electron transport through hydrated duplex DNA. Our results show that the two spins migrate through duplex DNA with a different...
متن کاملرسانش وابسته به اسپین یک نانو ساختار استخوان ماهی نوعی
In this study, we investigated the spin dependent electronic transport of a fishbone-like nanostructure including two magnetic atoms at its ends. The electronic conductance of this nanostructure for three different orientations of atomic magnetic moments was numerically studied when the structure was sandwiched between two nonmagnetic leads. By using Green’s function technique at the tight-bind...
متن کاملطیف مزونها و وابستگی به پتانسیلهای فوق ریز
In most models, mesons consist of quark -antiquark pairs moving in a confining potential. However, it would be interesting to consider the effect of an extra residual interaction by introducing the quark particles which contain a dependent spin and isospin. In the Chiral constituent quark model, the hyperfine part of the potential is provided by the interaction of the Goldstone bosons, which ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 49 شماره
صفحات -
تاریخ انتشار 2016