Multi-Channel Microfluidic Biosensor Platform Applied for Online Monitoring and Screening of Biofilm Formation and Activity

نویسندگان

  • Julia Bruchmann
  • Kai Sachsenheimer
  • Bastian E. Rapp
  • Thomas Schwartz
چکیده

Bacterial colonization of surfaces and interfaces has a major impact on various areas including biotechnology, medicine, food industries, and water technologies. In most of these areas biofilm development has a strong impact on hygiene situations, product quality, and process efficacies. In consequence, biofilm manipulation and prevention is a fundamental issue to avoid adverse impacts. For such scenario online, non-destructive biofilm monitoring systems become important in many technical and industrial applications. This study reports such a system in form of a microfluidic sensor platform based on the combination of electrical impedance spectroscopy and amperometric current measurement, which allows sensitive online measurement of biofilm formation and activity. A total number of 12 parallel fluidic channels enable real-time online screening of various biofilms formed by different Pseudomonas aeruginosa and Stenotrophomonas maltophilia strains and complex mixed population biofilms. Experiments using disinfectant and antibiofilm reagents demonstrate that the biofilm sensor is able to discriminate between inactivation/killing of bacteria and destabilization of biofilm structures. The impedance and amperometric sensor data demonstrated the high dynamics of biofilms as a consequence of distinct responses to chemical treatment strategies. Gene expression of flagellar and fimbrial genes of biofilms grown inside the microfluidic system supported the detected biofilm growth kinetics. Thus, the presented biosensor platform is a qualified tool for assessing biofilm formation in specific environments and for evaluating the effectiveness of antibiofilm treatment strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development and validation of a microfluidic reactor for biofilm monitoring via optical methods

We present the design, fabrication, and verification of a microfluidic platform for optical monitoring of bacterial biofilms. Biofilm formation characterizes the majority of infections caused by bacteria that are developing increased resistance to traditional antibiotic treatment, necessitating the development of reliable tools not only for study of biofilm growth, but also for in situ examinat...

متن کامل

Label‐Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes

Development of an efficient sensing platform capable of continual monitoring of biomarkers is needed to assess the functionality of the in vitro organoids and to evaluate their biological responses toward pharmaceutical compounds or chemical species over extended periods of time. Here, a novel label-free microfluidic electrochemical (EC) biosensor with a unique built-in on-chip regeneration cap...

متن کامل

Antimicrobial Activity of Combined Extracts of Trachyspermum, Thymus and Pistachio against Some Pathogenic Bacteria

Background: Microbial biofilms are responsible for many human infections and increase of antibiotic resistant bacteria. Therefore, finding an efficient way to prevent infection and biofilm formation of bacteria is essential. Medicinal plants are among suitable candidates to inhibit biofilm formation of bacteria. The aim of this study was to evaluate the antimicrobial effects of...

متن کامل

Designed miniaturization of microfluidic biosensor platforms using the stop-flow technique.

Here, we present a novel approach to increase the degree of miniaturization as well as the sensitivity of biosensor platforms by the optimization of microfluidic stop-flow techniques independent of the applied detection technique (e.g. electrochemical or optical). The readout of the labeled bioassays, immobilized in a microfluidic channel, under stop-flow conditions leads to a rectangular shape...

متن کامل

Frequency of bap and cpaA virulence genes in drug resistant clinical isolates of Acinetobacter baumannii and their role in biofilm formation

Objective(s): Acinetobacter baumannii has a high propensity to form biofilm and frequently causes medical device-related infections with multiple-drug-resistance in hospitals. The aim of this work is to study antimicrobial resistance and the role of bap and cpaA genes in biofilm formation by A. baumannii to understand how this pathogen persists in the hospital environment. Materials and Methods...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015