Non-Mendelian inheritance induced by gene amplification in the germ nucleus of Paramecium tetraurelia.

نویسندگان

  • Atsushi Matsuda
  • Mihoko Takahashi
چکیده

A genetic investigation of strain d4-95, which carries a recessive mutant allele (pwB(95)) of pawn-B, one of the controlling elements of voltage-dependent calcium channels in Paramecium tetraurelia, revealed a non-Mendelian feature. Progeny of the cross between d4-95 and wild type often expressed a clonally stable mutant phenotype, even when they had a wild-type gene. The mutant phenotype was also expressed after self-fertilization of theoretical wild-type homozygotes recovered from the cross. Our molecular analysis demonstrated that the copy number of the mutant pwB gene in the micro- and macronucleus of d4-95 was much greater than that of the wild type. Most of the amplified, extra pwB gene copies in d4-95 were heritable independently from the original pwB locus. Repeated backcrossing of d4-95 with the wild type to dilute extra pwB genes in the strain produced segregants with a completely normal Mendelian trait in testcrosses. These results strongly suggest that a non-Mendelian inheritance of d4-95 was induced by gene amplification in the micronucleus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mendelian mutation affecting mating-type determination also affects developmental genomic rearrangements in Paramecium tetraurelia.

In Paramecium tetraurelia, mating type is determined during the differentiation of the somatic macronucleus from a zygotic nucleus genetically competent for both types, O and E. Determination of the developing macronucleus is controlled by the parental macronucleus through an unknown mechanism resulting in the maternal inheritance of mating types. The pleiotropic mutation mtFE affects macronucl...

متن کامل

Molecular and genetic analyses of the B type surface protein gene from Paramecium tetraurelia.

The gene encoding the B type variable surface protein from Paramecium tetraurelia stock 51 has been cloned and sequenced. The 7,182 nucleotide open reading frame contains no introns and encodes a cysteine-rich protein that has a periodic structure including three nearly perfect tandem repeats in the central region. Interestingly, the B gene is located near a macronuclear telomere as was shown p...

متن کامل

RNA-mediated programming of developmental genome rearrangements in Paramecium tetraurelia.

The germ line genome of ciliates is extensively rearranged during development of the somatic macronucleus. Numerous sequences are eliminated, while others are amplified to a high ploidy level. In the Paramecium aurelia group of species, transformation of the maternal macronucleus with transgenes at high copy numbers can induce the deletion of homologous genes in sexual progeny, when a new macro...

متن کامل

The SUMO pathway is developmentally regulated and required for programmed DNA elimination in Paramecium tetraurelia.

Extensive genome-wide remodeling occurs during the formation of the somatic macronuclei from the germ line micronuclei in ciliated protozoa. This process is limited to sexual reproduction and includes DNA amplification, chromosome fragmentation, and the elimination of internal segments of DNA. Our efforts to define the pathways regulating these events revealed a gene encoding a homologue of ubi...

متن کامل

Identification of DNA segments capable of rescuing a non-mendelian mutant in paramecium.

The non-Mendelian mutant d48 of Paramecium tetraurelia contains micronuclear wild type A genes, but at autogamy and conjugation proper processing fails and new macronuclei lack A genes. When cloned A genes are injected into the macronucleus of d48, proper processing is restored at the next autogamy; d48 is rescued, becoming permanently wild type. In the present study we have injected portions o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 169 1  شماره 

صفحات  -

تاریخ انتشار 2005