Monotone Difference Schemes for Weakly Coupled Elliptic and Parabolic Systems
نویسندگان
چکیده
The present paper is devoted to the development of the theory of monotone difference schemes, approximating the so-called weakly coupled system of linear elliptic and quasilinear parabolic equations. Similarly to the scalar case, the canonical form of the vector-difference schemes is introduced and the definition of its monotonicity is given. This definition is closely associated with the property of non-negativity of the solution. Under the fulfillment of the positivity condition of the coefficients, two-side estimates of the approximate solution of these vector-difference equations are established and the important a priori estimate in the uniform norm C is given.
منابع مشابه
Existence and Uniqueness of a Classical Solution of Fourier’s First Problem for Nonlinear Parabolic-elliptic Systems
This paper deals with the existence and uniqueness of the classical solution of Fourier’s first problem for a wide class of systems of two weakly coupled quasi-linear second order partial differential functional equations. One equation is of the parabolic type (the degenerated parabolic equation) and the other of the elliptic type (the elliptic equation with a parameter). The functional depende...
متن کاملMonotone schemes for a class of nonlinear elliptic and parabolic problems
We construct monotone numerical schemes for a class of nonlinear PDE for elliptic and initial value problems for parabolic problems. The elliptic part is closely connected to a linear elliptic operator, which we discretize by monotone schemes, and solve the nonlinear problem by iteration. We assume that the elliptic differential operator is in the divergence form, with measurable coefficients s...
متن کاملApproximation Schemes for Monotone Systems of Nonlinear Second Order Partial Differential Equations: Convergence Result and Error Estimate
We consider approximation schemes for monotone systems of fully nonlinear second order partial differential equations. We first prove a general convergence result for monotone, consistent and regular schemes. This result is a generalization to the well known framework of Barles-Souganidis, in the case of scalar nonlinear equation. Our second main result provides the convergence rate of approxim...
متن کاملSystems of Quasilinear Parabolic Equations with Discontinuous Coefficients and Continuous Delays
This paper is concerned with a weakly coupled system of quasilinear parabolic equations where the coefficients are allowed to be discontinuous and the reaction functions may depend on continuous delays. By the method of upper and lower solutions and the associated monotone iterations and by difference ratios method and various estimates, we obtained the existence and uniqueness of the global pi...
متن کاملError bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations
We obtain non-symmetric upper and lower bounds on the rate of convergence of general monotone approximation/numerical schemes for parabolic Hamilton Jacobi Bellman Equations by introducing a new notion of consistency. We apply our general results to various schemes including finite difference schemes, splitting methods and the classical approximation by piecewise constant controls.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Meth. in Appl. Math.
دوره 17 شماره
صفحات -
تاریخ انتشار 2017