Exploiting Sparsity in Semide nite Programming via Matrix Completion I : General Framework ?

نویسندگان

  • Mituhiro Fukuda
  • Masakazu Kojima
چکیده

A critical disadvantage of primal-dual interior-point methods against dual interior-point methods for large scale SDPs (semidenite programs) has been that the primal positive semidenite variable matrix becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidenite matrix completion, this article proposes a general method of exploiting the aggregate sparsity pattern over all data matrices to overcome this disadvantage. Our method is used in two ways. One is a conversion of a sparse SDP having a large scale positive semidenite variable matrix into an SDP having multiple but smaller size positive semidenite variable matrices to which we can eectively apply any interior-point method for SDPs employing a standard block-diagonal matrix data structure. The other way is an incorporation of our method into primal-dual interior-point methods which we can apply directly to a given SDP. In Part II of this article, we will investigate an implementation of such a primal-dual interior-point method based on positive denite matrix completion, and report some numerical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Sparsity in Primal-dual Interior-point Methods for Semidenite Programming

The Helmberg-Rendl-Vanderbei-Wolkowicz/Kojima-Shindoh-Hara/Monteiro and the Nesterov-Todd search directions have been used in many primal-dual interior-point methods for semide nite programs. This paper proposes an e cient method for computing the two directions when a semide nite program to be solved is large scale and sparse.

متن کامل

Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results

In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semidefinite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semidefinite matrix completion, and it can be embodied in two different ways. One is by a ...

متن کامل

Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework

A critical disadvantage of primal-dual interior-point methods compared to dual interior-point methods for large scale semidefinite programs (SDPs) has been that the primal positive semidefinite matrix variable becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidefinite matrix completion, this article proposes a general met...

متن کامل

Exploiting Sparsity in Semideenite Programming via Matrix Completion Ii: Implementation and Numerical Results

In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semideenite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semideenite matrix completion, and it can be embodied in two diierent ways. One is by a con...

متن کامل

Numerical Evaluation of SDPA (

SDPA (SemiDe nite Programming Algorithm) is a C++ implementation of a Mehrotra-type primal-dual predictor-corrector interior-point method for solving the standard form semide nite program and its dual. We report numerical results of large scale problems to evaluate its performance, and investigate how major time-consuming parts of SDPA vary with the problem size, the number of constraints and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999