Centrifugal effects in rotating convection: nonlinear dynamics

نویسندگان

  • J. M. LOPEZ
  • J. M. Lopez
چکیده

Rotating convection in cylindrical containers is a canonical problem in fluid dynamics, in which a variety of simplifying assumptions have been used in order to allow for low-dimensional models or linear stability analysis from trivial basic states. An aspect of the problem that has received only limited attention is the influence of the centrifugal force, because it makes it difficult or even impossible to implement the aforementioned approaches. In this study, the mutual interplay between the three forces of the problem, Coriolis, gravitational and centrifugal buoyancy, is examined via direct numerical simulation of the Navier–Stokes equations in a parameter regime where the three forces are of comparable strengths in a cylindrical container with the radius equal to the depth so that wall effects are also of order one. Two steady axisymmetric basic states exist in this regime, and the nonlinear dynamics of the solutions bifurcating from them is explored in detail. A variety of bifurcated solutions and several codimension-two bifurcation points acting as organizing centres for the dynamics have been found. A main result is that the flow has simple dynamics for either weak heating or large centrifugal buoyancy. Reducing the strength of centrifugal buoyancy leads to subcritical bifurcations, and as a result linear stability is of limited utility, and direct numerical simulations or laboratory experiments are the only way to establish the connections between the different solutions and their organizing centres, which result from the competition between the three forces. Centrifugal effects primarily lead to the axisymmetrization of the flow and a reduction in the heat flux.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centrifugal effects in rotating convection: axisymmetric states and three-dimensional instabilities

Rotating convection is analysed numerically in a cylinder of aspect ratio one, for Prandtl number about 7. Traditionally, the problem has been studied within the Boussinesq approximation with density variation only incorporated in the gravitational buoyancy term and not in the centrifugal buoyancy term. In that limit, the governing equations admit a trivial conduction solution. However, the cen...

متن کامل

Confined rotating convection with large Prandtl number: centrifugal effects on wall modes.

Thermal convection in a rotating cylinder with a radius-to-height aspect ratio of Γ=4 for fluids with large Prandtl number is studied numerically. Centrifugal buoyancy effects are investigated in a regime where the Coriolis force is relatively large and the onset of thermal convection is in the so-called wall modes regime, where pairs of hot and cold thermal plumes ascend and descend in the cyl...

متن کامل

Travelling circular waves in axisymmetric rotating convection

Rayleigh–Bénard convection in a finite rotating cylinder of moderate aspect ratio (radius four times the depth) is investigated numerically for a fluid of Prandtl number equal to 7 (corresponding essentially to water). We consider the effects of rotation from both the Coriolis force and the centrifugal force and find that the centrifugal force plays a significant dynamic role. In this initial s...

متن کامل

Identify the Rotating Stall in Centrifugal Compressors by Fractal Dimension in Reconstructed Phase Space

Based on phase space reconstruction and fractal dynamics in nonlinear dynamics, a method is proposed to extract and analyze the dynamics of the rotating stall in the impeller of centrifugal compressor, and some numerical examples are given to verify the results as well. First, the rotating stall of an existing low speed centrifugal compressor (LSCC) is numerically simulated, and the time series...

متن کامل

Onset of Küppers–Lortz-like dynamics in finite rotating thermal convection

The onset of thermal convection in a finite rotating cylinder is investigated using direct numerical simulations of the Navier–Stokes equations with the Boussinesq approximation in a regime in which spatio-temporal complexity is observed directly after onset. The system is examined in the non-physical limit of zero centrifugal force as well as with an experimentally realizable centrifugal force...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009