Model-based clustering with non-elliptically contoured distributions
نویسندگان
چکیده
The majority of the existing literature on modelbased clustering deals with symmetric components. In some cases, especially when dealing with skewed subpopulations, the estimate of the number of groups can be misleading; if symmetric components are assumed we need more than one component to describe an asymmetric group. Existing mixture models, based on multivariate normal distributions and multivariate t distributions, try to fit symmetric distributions, i.e. they fit symmetric clusters. In the present paper, we propose the use of finite mixtures of the normal inverse Gaussian distribution (and its multivariate extensions). Such finite mixture models start from a density that allows for skewness and fat tails, generalize the existing models, are tractable and have desirable properties. We examine both the univariate case, to gain insight, and the multivariate case, which is more useful in real applications. EM type algorithms are described for fitting the models. Real data examples are used to demonstrate the potential of the new model in comparison with existing ones.
منابع مشابه
The Predictive Distribution for the Heteroscedastic Multivariate Linear Models with Elliptically Contoured Error Distributions
This paper considers the heteroscedastic multivariate linear model with errors following elliptically contoured distributions. The marginal likelihood function of the unknown covariance parameters and the predictive distribution of future responses have been derived. The predictive distribution obtained is a product of m multivariate Student’s t distributions. It is interesting to note that whe...
متن کاملOn the Theory of Elliptically Contoured Distributions
The theory of elliptically contoured distributions is presented in an unrestricted setting (without reference to moment restrictions or assumptions of absolute continuity). These distributions are defined parametrically through their characteristic functions, and then studied primarily through the use of stochastic representations which naturally follow from the seminal work of Schoenberg on sp...
متن کاملGeometric disintegration and star-shaped distributions
Geometric and stochastic representations are derived for the big class of p-generalized elliptically contoured distributions, and (generalizing Cavalieri?s and Torricelli?s method of indivisibles in a non-Euclidean sense) a geometric disintegration method is established for deriving even more general star-shaped distributions. Applications to constructing non-concentric elliptically contoured a...
متن کاملA Note on Hilbertian Elliptically Contoured Distributions
In this paper, we discuss elliptically contoured distribution for random variables defined on a separable Hilbert space. It is a generalization of the multivariate elliptically contoured distribution to distributions on infinite dimensional spaces. Some theoretical properties of the Hilbertian elliptically contoured distribution are discussed, examples on functional data are investigated to ill...
متن کاملTheory of cross sectionally contoured distributions and its applications
We discuss generalization of elliptically contoured distributions to densities whose contours are arbitrary cross sections in the framework of group invariance. This generalization leads to much richer family of distributions compared to the elliptically contoured distributions. The basic property of the elliptically contoured distribution is the independence of the \length" and the \direction"...
متن کاملGeneralized Birnbaum-Saunders Distribution
The two-parameter Birnbaum–Saunders (BS) distribution was originally proposed as a failure time distribution for fatigue failure caused under cyclic loading. BS model is a positively skewed statistical distribution which has received great attention in recent decades. Several extensions of this distribution with various degrees of skewness, kurtosis and modality are considered. In particular, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics and Computing
دوره 19 شماره
صفحات -
تاریخ انتشار 2009