Granger Causality Network Reconstruction of Conductance-Based Integrate-and-Fire Neuronal Systems
نویسندگان
چکیده
Reconstruction of anatomical connectivity from measured dynamical activities of coupled neurons is one of the fundamental issues in the understanding of structure-function relationship of neuronal circuitry. Many approaches have been developed to address this issue based on either electrical or metabolic data observed in experiment. The Granger causality (GC) analysis remains one of the major approaches to explore the dynamical causal connectivity among individual neurons or neuronal populations. However, it is yet to be clarified how such causal connectivity, i.e., the GC connectivity, can be mapped to the underlying anatomical connectivity in neuronal networks. We perform the GC analysis on the conductance-based integrate-and-fire (I&F) neuronal networks to obtain their causal connectivity. Through numerical experiments, we find that the underlying synaptic connectivity amongst individual neurons or subnetworks, can be successfully reconstructed by the GC connectivity constructed from voltage time series. Furthermore, this reconstruction is insensitive to dynamical regimes and can be achieved without perturbing systems and prior knowledge of neuronal model parameters. Surprisingly, the synaptic connectivity can even be reconstructed by merely knowing the raster of systems, i.e., spike timing of neurons. Using spike-triggered correlation techniques, we establish a direct mapping between the causal connectivity and the synaptic connectivity for the conductance-based I&F neuronal networks, and show the GC is quadratically related to the coupling strength. The theoretical approach we develop here may provide a framework for examining the validity of the GC analysis in other settings.
منابع مشابه
Robust Modulation of Integrate-and-Fire Models.
By controlling the state of neuronal populations, neuromodulators ultimately affect behavior. A key neuromodulation mechanism is the alteration of neuronal excitability via the modulation of ion channel expression. This type of neuromodulation is normally studied with conductance-based models, but those models are computationally challenging for large-scale network simulations needed in populat...
متن کاملThe Impact of Human Capital on FDI with New Evidence from Bootstrap Panel Granger Causality Analysis
T his study evaluates the causality relationship between human capital and foreign direct investment inflow in twenty-six OIC (the Organization of Islamic Cooperation) countries over the period 1970–2014. We employed the panel Granger non-causality testing approach of Kònya (2006) that is based on seemingly unrelated regression (SUR) systems, and Wald tests with country specific boot...
متن کاملAnalysis of sampling artifacts on the Granger causality analysis for topology extraction of neuronal dynamics
Granger causality (GC) is a powerful method for causal inference for time series. In general, the GC value is computed using discrete time series sampled from continuous-time processes with a certain sampling interval length τ, i.e., the GC value is a function of τ. Using the GC analysis for the topology extraction of the simplest integrate-and-fire neuronal network of two neurons, we discuss b...
متن کاملRealistic Models of Neurons and Neuronal Networks
integrate and fire model#rate model#conductance models#synaptic model#multicompartment model integrate and fire model leaky integrate and fire model rate model synaptic input to the integrate and fire model conductance models kinetic models of ionic channels synaptic input to conductance models models of synaptic modification multicompartmental models This is an article that describes realistic...
متن کاملSpike-Triggered Regression for Synaptic Connectivity Reconstruction in Neuronal Networks
How neurons are connected in the brain to perform computation is a key issue in neuroscience. Recently, the development of calcium imaging and multi-electrode array techniques have greatly enhanced our ability to measure the firing activities of neuronal populations at single cell level. Meanwhile, the intracellular recording technique is able to measure subthreshold voltage dynamics of a neuro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014